首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Ultraviolet B (UVB) irradiation is one of the most dangerous insults for skin and causes sunburn, erythema, photoaging and photocarcinogenesis. Curcumin (diferuloylmethane), a yellow spice derived from dried rhizomes of Curcuma longa, has been shown to possess significant anti‐inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant and anti‐infective effects. However, the protective effects of curcumin against acute photo‐damage are poorly understood. In this study, we investigated the photoprotective effects of curcumin against UVB‐induced acute photo‐damage in hairless mice and immortalized human keratinocytes (HaCaT). Topical application of curcumin significantly inhibited acute UVB (540 mJ cm?2, for 3 successive days)‐induced inflammatory cells, collagen accrementition derangement and lipid peroxidation, and effectively induced NF‐E2‐related factor 2 (Nrf2) nuclear accumulation in uncovered (Uncv) hairless mice skin. Treatment of HaCaT cells with curcumin significantly attenuated acute UVB (300 mJ cm?2)‐induced lactate dehydrogenase release, intracellular reactive oxygen species production and DNA damage, activated the expression of the phase II detoxifying enzymes and promoted DNA repair activity. The photoprotective effect provided by curcumin was potential associated with modulation of Nrf2‐dependent antioxidant response. Our study suggested that curcumin is a potential agent for preventing and/or treating UV radiation‐induced acute inflammation and photoaging.  相似文献   

3.
4.
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB‐exposed SKH‐1 hairless mouse skin. Mice were exposed to 180 mJ cm?2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB‐exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX‐2, PGE2 as well as its receptors (EP1–EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL‐1β and IL‐6 in UVB‐exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB‐induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB‐induced cutaneous inflammation and DNA damage.  相似文献   

5.
Melanoma incidences are increasing rapidly, and ultraviolet (UV) radiation from the sun is believed to be its major contributing factor. UV exposure causes DNA damage in skin which may initiate cutaneous skin cancers including melanoma. Melanoma arises from melanocytes, the melanin‐producing skin cells, following genetic dysregulations resulting into hyperproliferative phenotype and neoplastic transformation. Both UVA and UVB exposures to the skin are believed to trigger melanocytic hyperplasia and melanomagenesis. Melanocytes by themselves are deficient in repair of oxidative DNA damage and UV‐induced photoproducts. Nicotinamide, an active form of vitamin B3 and a critical component of the human body's defense system has been shown to prevent certain cancers including nonmelanoma skin cancers. However, the mechanism of nicotinamide's protective effects is not well understood. Here, we investigated potential protective effects and mechanism of nicotinamide against UVA‐ and/or UVB‐ induced damage in normal human epidermal melanocytes. Our data demonstrated an appreciable protective effect of nicotinamide against UVA‐ and/or UVB‐ induced DNA damage in melanocytes by decreasing both cyclobutane pyrimidine dimers and 8‐hydroxy‐2′‐deoxyguanosine levels. We found that the photoprotective response of nicotinamide was associated with the activation of nucleotide excision repair genes and NRF2 signaling. Further studies are needed to validate our findings in in vivo models.  相似文献   

6.
It has been validated that ultraviolet B (UVB) irradiation induced both squamous and basal cell carcinomas, as a tumor initiator and promoter. Opuntia humifusa is a member of the Cactaceae family which has been demonstrated in our previous study to have a chemopreventive effect in 7, 12‐dimethylbenz[a]anthracene and 12‐O‐tetradecanoylphorbol‐13‐acetate induced skin carcinogenesis models. Therefore, this study was designed to determine the protective effects of O.humifusa against photocarcinogenesis. O. humifusa was administrated to mice as a dietary feeding, following exposure to UVB radiation (180 mJ/cm2) twice a week of 30 weeks for skin tumor development in hairless mice. Dietary O.humifusa inhibited UVB‐induced epidermal hyperplasia, infiltration of leukocytes, level of myeloperoxidase and the levels of proinflammatory cytokines, tumor necrosis factor‐ α (TNF‐α), interleukin‐1β (IL‐1β) and interleukin‐6 (IL‐6), in UVB exposed skin. Also, O.humifusa significantly inhibited both protein and mRNA expression level of cyclooxygenase‐2 (COX‐2), nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA) and cyclin D1 compared to the non‐O.humifusa treated group. Collectively, these results suggest that O.humifusa could inhibit photocarcinogenesis in mouse skin and that protective effect is associated with the inhibition of not only UVB‐induced inflammatory responses involving COX‐2, iNOS and proinflammatory cytokines, but also the down‐regulation of UVB‐induced cellular proliferation.  相似文献   

7.
UVB radiation contributes to both direct and indirect damage to the skin including the generation of free radicals and reactive oxygen species (ROS), inflammatory responses, immunosuppression and gene mutations, which can ultimately lead to photocarcinogenesis. A plant‐derived flavonoid, baicalin, has been shown to have antioxidant, anti‐inflammatory and free radical scavenging activities. Previous studies from our laboratory have shown that in murine skin, Toll‐like receptor‐4 (TLR4) enhanced both UVB‐induced DNA damage and inflammation. The aim of this study was to investigate the efficacy of baicalin against TLR4‐mediated processes in the murine keratinocyte PAM 212 cell line. Our results demonstrate that treating keratinocytes with baicalin both before and after UV radiation (100 mJ cm?2) significantly inhibited the level of intracellular ROS and decreased cyclobutane pyrimidine dimers and 8‐Oxo‐2′‐deoxyguanosine (8‐oxo‐dG)—markers of DNA damage. Furthermore, cells treated with baicalin demonstrated an inhibition of TLR4 and its downstream signaling molecules, MyD88, TRIF, TRAF6 and IRAK4. TLR4 pathway inhibition resulted in NF‐κB inactivation and down‐regulation of iNOS and COX‐2 protein expression. Taken together, baicalin treatment effectively protected keratinocytes from UVB‐induced inflammatory damage through TLR pathway modulation.  相似文献   

8.
The UVA is currently thought to be carcinogenic because, similar to UVB, it induces the formation of cyclobutane pyrimidine dimers (CPDs). Various drugs have been reported to cause photosensitive drug eruptions as an adverse effect. Although the precise mechanism of photosensitive drug eruption remains to be elucidated, it is generally accepted that free radicals and other reactive molecules generated via UV‐irradiated drugs play important roles in the pathogenesis of photosensitive drug eruptions. The waveband of concern for photo‐reactive drugs is UVA‐visible light, but some extend into the UVB region. We tested whether photosensitive drugs could enhance CPD formation after UVA exposure by using isolated DNA in the presence of several reported photosensitive drugs using high‐performance liquid chromatography. We found that the diuretic agent hydrochlorothiazide (HCT) significantly enhanced the production of TT dimers over a wide range of UVA. Furthermore, we investigated whether UVA plus HCT could enhance CPD production in xeroderma pigmentosum model mice defective in nucleotide excision repair. Immunofluorescence studies showed that CPD formation in the skin significantly increased after 365 nm narrow‐band UVA irradiation in the presence of HCT, compared with that in wild‐type mice. HCT could be used with caution because of its enhancement of UVA‐induced DNA damage.  相似文献   

9.
Exposure to ultraviolet (UV) light causes increased matrix metalloproteinase (MMP) activity and decreased collagen synthesis, leading to skin photoaging. Salvianolic acid B (SAB), a polyphenol, was extracted and purified from salvia miltiorrhiza. We assessed effects of SAB on UVB‐induced photoaging and investigated its molecular mechanism of action in UVB‐irradiated normal human dermal fibroblasts. Our results show that SAB significantly inhibited the UVB‐induced expression of metalloproteinases‐1 (MMP‐1) and interleukin‐6 (IL‐6) while promoting the production of type I procollagen and transforming growth factor β1 (TGF‐β1). Moreover, treatment with SAB in the range of 1–100 μg/mL significantly inhibited UVB‐induced extracellular signal‐regulated kinase (ERK), Jun N‐terminal kinase (JNK) and p38 phosphorylation, which resulted in decreasing UVB‐induced phosphorylation of c‐Fos and c‐Jun. These results indicate that SAB downregulates UV‐induced MMP‐1 expression by inhibiting Mitogen‐activated protein kinase (MAPK) signaling pathways and activator protein‐1 (AP‐1) activation. Our results suggest a potential use for SAB in skin photoprotection.  相似文献   

10.
UVA irradiation is known to cause photoaging via production of reactive oxygen species (ROS) and activation of inflammatory processes. Previously, we have demonstrated that baicalin, a plant‐derived flavonoid possessing both antioxidant and anti‐inflammatory activity, protects mouse keratinocytes against damage from UVB irradiation. However, the role of baicalin in vivo has not been well studied, particularly in the setting of UVA irradiation. To explore the protective effects and mechanisms of baicalin treatment in mice after UVA irradiation, mice were exposed to acute and chronic doses of UVA irradiation with or without baicalin or vehicle. Skin samples were collected for histological staining, RNA isolation, flow cytometry and protein extraction. Our results demonstrate the protective effect of baicalin against UVA‐induced oxidative damage and inflammation in mouse skin. These effects are likely mediated via the TLR4 pathway, which may serve as a target for photochemoprevention against skin inflammation.  相似文献   

11.
Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB‐mediated responses in human epidermal keratinocytes and in a three‐dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm?2)‐mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB‐mediated (1) poly(ADP‐ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB‐induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV‐induced skin damage.  相似文献   

12.
Ultraviolet radiation (UVR) induces immunosuppression and is a major factor for development of skin cancer. Numerous efforts have been made to determine mechanisms for UVR‐induced immunosuppression and to develop strategies for prevention and treatment of UVR‐induced cancers. In the current study, we use IL‐17 receptor (IL‐17R) deficient mice to examine whether IL‐17 mediated responses have a role in UVB (290–320)‐induced immunosuppression of contact hypersensitivity responses. Results demonstrate that IL‐17 mediated responses are required for UVB‐induced immunosuppression of contact hypersensitivity responses. The systemic immune suppression and development of regulatory T cells are inhibited in UVB‐treated IL‐17R deficient mice compared to wild‐type animals. The deficiency in IL‐17R inhibits the infiltration and development of a tolerogenic myeloid cell population in UVB‐treated skin, which expresses CD11b and Gr‐1 and produces reactive oxygen species. We speculate that the development of the tolerogenic myeloid cells is dependent on IL‐17‐induced chemokines and inflammatory mediators in UVB‐treated skin. The inhibition of the tolerogenic myeloid cells may be attributed to the suppression of regulatory T cells in UVR‐treated IL‐17R?/? mice. The findings may be exploited to new strategies for prevention and treatment of UVR‐induced skin diseases and cancers.  相似文献   

13.
Photoaging and glycation stress are major causes of skin deterioration. Oxidative stress caused by ultraviolet B (UVB) irradiation can upregulate matrix metalloprotease 1 (MMP‐1), a major enzyme responsible for collagen damage in the skin. Advanced glycation end products (AGEs) accumulate via gradual formation from skin proteins, especially from long‐lived proteins such as dermal elastin and collagen. Plantamajoside (PM), isolated from Plantago asiatica, has various biological effects including anti‐inflammatory and antioxidant effects. In this study, we assessed the protective effects of PM on a human keratinocyte cell line (HaCaT) and primary human dermal fibroblasts (HDF) against stress caused by glyceraldehyde‐induced AGEs (glycer‐AGEs) with UVB irradiation. We found that PM attenuated UVB‐ and‐glycer‐AGEs‐induced MMP‐1 expression in HaCaT and HDF cells and proinflammatory cytokines expression by inhibiting the phosphorylation of mitogen‐activated protein kinases (MAPKs) activated by reactive oxygen species. Specific inhibitors of NF‐κB and MAPKs attenuated the induced expression of MMP‐1. PM also inhibited the phosphorylation of IκBα, and reduced nuclear translocation of NF‐κB in these cells. Furthermore, PM attenuated the upregulation of receptor for AGEs (RAGE) by glycer‐AGEs with UVB irradiation. Therefore, our findings strongly suggest that PM is a promising inhibitor of skin photoaging.  相似文献   

14.
Photoprotection is essential to prevent the long‐term deleterious effects of ultraviolet (UV ), including skin cancer and photoaging. So far, there has been an increase in the use of natural bioactive phytochemicals for the development of more effective skin photoprotective agents. However, the molecular mechanisms underlying the photochemoprotection activity of such compounds remain largely unknown. The objective of this study was to investigate the effects of a Sechium edule fruit extract (SEE ) in terms of photoprotection against UVA in primary human keratinocytes. We found that SEE protected keratinocytes against UVA ‐induced cytotoxicity, decreased the intracellular amounts of reactive oxygen species, and reduced oxidatively induced DNA lesions after UVA exposure. Furthermore, SEE decreased the induction of CPD lesions in UVA ‐irradiated keratinocytes and exhibited increased DNA repair of such photoproducts at 24 h postexposure. Finally, using DNA repair biochips, we demonstrated that SEE ‐treated keratinocytes had DNA enzymatic repair activities more efficient for abasic sites, CPD and thymine glycols. Therefore, the benefits of SEE against UVA could be explained by a combination of antioxidant activity, the reduction in DNA damage, and the enhancement of DNA repair capacities.  相似文献   

15.
Naproxen possesses anti‐proliferative and pro‐apoptotic effects besides its known anti‐inflammatory functions. Here, we demonstrate the anticancer effects of naproxen against UVB‐induced basal cell carcinoma (BCCs) and squamous cell carcinoma (SCCs) in a highly susceptible murine model of UVB carcinogenesis. Naproxen significantly inhibited UVB‐induced BCCs and SCCs in this model. Tumor number and volume were significantly decreased (P < 0.005 and P < 0.05, respectively). Inhibition in UVB‐induced SCCs and BCCs was 77% and 86%, respectively, which was associated with reduced PCNA and cyclin D1 and increased apoptosis. As expected, inflammation‐related iNOS, COX‐2 and nuclear NFκBp65 were also diminished by naproxen treatment. Residual tumors excised from naproxen‐treated animal were less invasive and showed reduced expression of epithelial‐mesenchymal transition (EMT) markers N‐cadherin, Vimentin, Snail and Twist with increased expression of E‐cadherin. In BCC and SCC cells, naproxen‐induced apoptosis and activated unfolded protein response (UPR) signaling with increased expression of ATF4, p‐eIF2α and CHOP. Employing iRNA‐based approaches, we found that naproxen‐induced apoptosis was regulated by CHOP as sensitivity of these cutaneous neoplastic cells for apoptosis was significantly diminished by ablating CHOP. In summary, these data show that naproxen is a potent inhibitor of UVB‐induced skin carcinogenesis. ER stress pathway protein CHOP may play an important role in inducing apoptosis in cancer cells.  相似文献   

16.
17.
The suppression of the immune system by overexposure to ultraviolet (UV) radiation has been implicated in the initiation and progression of photocarcinogenesis. Numerous changes occur in the skin on UVB exposure, including the generation of inflammatory mediators, DNA damage, epigenetic modifications, and migration and functional alterations in the antigen‐presenting dendritic cells. Although each of these alterations can elicit a cascade of events that have the potential to modulate immune sensitivity alone, there is emerging evidence that there is considerable crosstalk between these cascades. The development of an understanding of UV‐induced changes in the skin that culminate in UV‐induced immunosuppression, which has been implicated in the risk of nonmelanoma skin cancer, as a network of events has implications for the development of more effective chemopreventive strategies. In the current review article, we discuss the evidence of interactions between the various molecular targets and signaling mechanisms associated with UV‐induced immunosuppression.  相似文献   

18.
UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.  相似文献   

19.
As the most important interface between human body and external environment, skin acts as an essential barrier preventing various environmental damages, among which DNA‐damaging UV radiation from the sun remains the major environmental risk factor causing various skin diseases. It has been well documented that wavelengths in the ultraviolet B (UVB) radiation range (290–320 nm) of the solar spectrum can be absorbed by skin and lead to cutaneous injury and various other deleterious effects. During process such as wound healing, the orchestrated movement of cells in a particular direction is essential and highly regulated, integrating signals controlling adhesion, polarity and the cytoskeleton. Cell adhesion and migration are modulated through both of actin and microtubule cytoskeletons. However, little was known about how UVB affects skin wound healing and migration of epidermal keratinocytes. Here, we demonstrate that UVB can delay the wound healing progress in vivo with a murine model of full‐thickness skin wound. In addition, UVB significantly inhibited keratinocyte motility by altering focal adhesion turnover and cytoskeletal dynamics. Our results provide new insights into the etiology of UVB exposure‐induced skin damages.  相似文献   

20.
NO‐releasing nonsteroidal anti‐inflammatory drugs (NO‐NSAIDs) have been shown to have anti‐inflammatory, antiproliferative and apoptosis‐inducing effects in tumor cells. Herein, we have investigated the effects of NO‐exisulind on the growth of UVB‐induced skin tumor development in a murine model. We found that the topical treatment with NO‐exisulind significantly reduced UVB‐induced tumors in SKH‐1 hairless mice. The tumors/tumor bearing mouse, the number of tumors/mouse and tumor volume/mouse decreased significantly (P < 0.05) as compared with vehicle‐treated and UVB‐irradiated positive controls. Consistently, NO‐exisulind‐treated animals showed reduced expression of proliferation markers, such as PCNA and cyclin D1. These mice also manifested increased expression of proapoptotic Bax and decreased expression of antiapoptotic Bcl2 with an increase in the number of TUNEL‐positive cells in tumors. We also investigated whether NO‐exisulind‐treated tumors are less invasive and progress less efficiently from benign to malignant carcinomas. For this, tumors were stained for various epithelial‐mesenchymal transition (EMT) markers. NO‐exisulind decreased the expression of mesenchymal markers, such as Fibronectin, N‐cadherin, SNAI, Slug and Twist and enhanced the epithelial marker E‐cadherin. Similarly, UVB‐induced phosphorylation of Erk1/2 and p38 was decreased in NO‐exisulind‐treated animals. These data suggest that NO‐exisulind reduces tumor growth and inhibits tumor progression by blocking proliferation, inducing apoptosis and reducing EMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号