首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A ferrocene‐based ionic liquid (Fe‐IL) is used as a metal‐containing feedstock with a nitrogen‐enriched ionic liquid (N‐IL) as a compatible nitrogen content modulator to prepare a novel type of non‐precious‐metal–nitrogen–carbon (M‐N‐C) catalysts, which feature ordered mesoporous structure consisting of uniform iron oxide nanoparticles embedded into N‐enriched carbons. The catalyst Fe10@NOMC exhibits comparable catalytic activity but superior long‐term stability to 20 wt % Pt/C for ORR with four‐electron transfer pathway under alkaline conditions. Such outstanding catalytic performance is ascribed to the populated Fe (Fe3O4) and N (N2) active sites with synergetic chemical coupling as well as the ordered mesoporous structure and high surface area endowed by both the versatile precursors and the synthetic strategy, which also open new avenues for the development of M‐N‐C catalytic materials.  相似文献   

2.
Low-temperature synthesis in ionic liquids (ILs) offers an efficient route for the preparation of metal oxide nanomaterials with tailor-made properties in a water-free environment. In this work, we investigated the role of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [C4C1Pyr][NTf2] in the synthesis of cobalt oxide nanoparticles from the molecular precursor Co2(CO)8 with ozone. We performed a model study in ultra-clean, ultrahigh vacuum (UHV) conditions by infrared reflection absorption spectroscopy (IRAS) using Au(111) as a substrate. Exposure of the pure precursor to ozone at low temperatures results in the oxidation of the first layers, leading to the formation of a disordered CoxOy passivation layer. Similar protection to ozone is also achieved by deposition of an IL layer onto a precursor film prior to ozone exposure. With increasing temperature, the IL gets permeable for ozone and a cobalt oxide film forms at the IL/precursor interface. We show that the interaction with the IL mediates the oxidation and leads to a more densely packed CoxOy film compared to a direct oxidation of the precursor.  相似文献   

3.
总结了近年来在离子液体中制备金属氧化物纳米材料的新方法以及离子液体在金属氧化物纳米材料制备方面的应用及发展趋势.目前,对于制备纳米金属氧化物,离子液体主要是作为电解液、表面活性剂;其未来的发展趋势是离子热合成和集模板-溶剂-反应物于一身的离子液体反应.  相似文献   

4.
The advent of ionic liquids (ILs) as eco‐friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in‐depth review on the newly emerging IL‐based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL‐based syntheses of energy materials.  相似文献   

5.
Doped graphene materials are of huge importance because doping with electron‐donating or electron‐withdrawing groups can significantly change the electronic structure and impact the electronic and electrochemical properties of these materials. It is highly important to be able to produce these materials in large quantities for practical applications. The only method capable of large‐scale production is the oxidative treatment of graphite to graphene oxide, followed by its consequent reduction. We describe a scalable method for a one‐step doping of graphene with phosphorus, with a simultaneous reduction of graphene oxide. Such a method is able to introduce significant amount of dopant (3.65 at. %). Phosphorus‐doped graphene is characterized in detail and shows important electronic and electrochemical properties. The electrical conductivity of phosphorus‐doped graphene is much higher than that of undoped graphene, owing to a large concentration of free carriers. Such a graphene material is expected to find useful applications in electronic, energy storage, and sensing devices.  相似文献   

6.
阳极氧化法制备具有纳米多孔结构的阳极氧化铁膜因其潜在的应用价值而倍受关注。然而,在阳极氧化过程中多孔结构的形成机制至今尚不清楚。本文结合电流密度-电位响应(I-V曲线)及法拉第定律的推导,分析了形成纳米多孔阳极氧化铁膜的过程中阳极电流的组成。结果表明,离子电流(导致离子迁移形成氧化物)和电子电流(导致析出氧气)共同组成阳极电流,并且纳米多孔阳极氧化铁膜的形成与两种电流的占比相关。分段式氧化物之间的空腔以及在阳极氧化初期纳米孔道上覆盖的致密膜,表明氧气泡可能是从氧化膜内部析出。此时,阳离子和阴离子绕过作为模具的氧气泡实现传质,最终导致纳米多孔结构的形成。此外,在阳极氧化铁膜形貌演变过程中,氧气泡不断向外溢出会使表面氧化物被冲破,导致表面孔径不断增大。  相似文献   

7.
基于离子液体的绿色液体电子器件可回收性强, 且具备柔性、 自修复性、 可重塑与可重构性等性能, 拓宽了液体电子器件的应用范围, 为绿色环保的多功能电子器件的开发提供了新途径. 本文围绕离子液体基的电子器件进行了总结, 并阐述了该类器件广阔的应用前景.  相似文献   

8.
The applications of ionic liquids (ILs) and IL‐derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL‐based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL‐based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL‐based solid‐phase extraction, ILs in mass spectrometry, and biological applications.  相似文献   

9.
We have performed a systematic study addressing the surface behavior of a variety of functionalized and non‐functionalized ionic liquids (ILs). From angle‐resolved X‐ray photoelectron spectroscopy, detailed conclusions on the surface enrichment of the functional groups and the molecular orientation of the cations and anions is derived. The systems include imidazolium‐based ILs methylated at the C2 position, a phenyl‐functionalized IL, an alkoxysilane‐functionalized IL, halo‐functionalized ILs, thioether‐functionalized ILs, and amine‐functionalized ILs. The results are compared with the results for corresponding non‐functionalized ILs where available. Generally, enrichment of the functional group at the surface is only observed for systems that have very weak interaction between the functional group and the ionic head groups.  相似文献   

10.
Developing cost‐effective electrocatalysts for the oxygen reduction reaction (ORR) is a prerequisite for broad market penetration of low‐temperature fuel cells. A major barrier stems from the poisoning of surface sites by nonreactive oxygenated species and the sluggish ORR kinetics on the Pt catalysts. Herein we report a facile approach to accelerating ORR kinetics by using a hydrophobic ionic liquid (IL), which protects Pt sites from surface oxidation, making the IL‐modified Pt intrinsically more active than its unmodified counterpart. The mass activity of the catalyst is increased by three times to 1.01 A mg?1Pt@0.9 V, representing a new record for pure Pt catalysts. The enhanced performance of the IL‐modified catalyst can be stabilized after 30 000 cycles. We anticipate these results will form the basis for an unprecedented perspective in the development of high‐performing electrocatalysts for fuel‐cell applications.  相似文献   

11.
A new electrochemiluminescence (ECL) sensing interface was established based on the zinc oxide nanorod in this paper. Firstly, the zinc oxide (ZnO) nanorod was prepared on an indium tin oxide (ITO) electrode surface by the method of constant current cathodic electrodeposition, on which the Nafion film was then modified, and finally ruthenium(II) tris(bipyridine) (Ru(bpy)32+) was immobilized at the ZnO nanorod/Nafion composite‐modified electrode. The sensing interface shows well ECL behaviors and perfect stability after being constant temperature treatment at 80 °C. The composite electrode was characterized by EIS, SEM and XRD. The results showed that the good stability maybe related to the water content of Nafion film.  相似文献   

12.
We report that ionic liquids (ILs) can be observed by electron microscopy without any charging of the liquid. Based on this, we present an in situ electrochemical scanning electron microscopy (in situ ECSEM) system. The key technology that enables in situ ECSEM is that charges can be removed from an IL by grounding it with a Pt wire, even if the IL is in an insulating glass cell. As a first demonstration, we describe the redox reaction of a polypyrrole (PPy) film accompanied by changes in its thickness when it is polarized by the film‐deposited Pt electrode in the IL. Furthermore, energy‐dispersive X‐ray fluorescence (EDX) analysis can be employed for the electrode polarized in the IL. The component analysis by EDX of PPy in an IL containing K+ as a marker, reveals doping of electrolyte cations into the PPy film upon the latter′s reduction and dedoping of cations from the film upon oxidation.  相似文献   

13.
A series of dendritic ionic liquids (DILs) based on imidazolium‐modified poly(aryl ether) dendrimers IL‐Br‐Gn (n=0–3) were synthesized by a modified convergent approach and “click” chemistry. The resulting DILs exhibited high thermal resistance with decomposition temperatures up to 270 °C and low glass transition temperatures in the range of approximately ?5–0 °C. All IL‐Br‐Gn were found to be miscible with water at any ratio and could encapsulate hydrophobic molecules. The reversible phase transfer of the DILs between the aqueous and organic phases was accomplished by simple anion exchange between the hydrophilic Br? anion and the hydrophobic bis(trifluoromethylsulfonyl)amide anion (NTf2?). IL‐Br‐Gn could be used as transporters to shuttle hydrophobic molecules between the organic and aqueous phases efficiently. The present work provides a new kind of transporting materials with potential applications in substance separation, drug delivery, and biomolecule transport.  相似文献   

14.
Knowledge of the structure of the electrical double layer in ionic liquids (IL) is crucial for their applications in electrochemical technologies. We report the synthesis and applicability of an imidazolium-based amphiphilic ionic liquid with a perdeuterated alkyl chain for studies of electric potential-dependent rearrangements, and changes in the microenvironment in a monolayer on a Au(111) surface. Electrochemical measurements show two states of the organization of ions on the electrode surface. In situ IR spectroscopy shows that the alkyl chains in imidazolium cations change their orientation depending on the adsorption state. The methylene-d2 stretching modes in the perdeuterated IL display a reversible, potential-dependent appearance of a new band. The presence of this mode also depends on the anion in the IL. Supported by quantum chemical calculations, this new mode is assigned to a second νas(CD2) band in alkyl-chain fragments embedded in a polar environment of the anions/solvent present in the vicinity of the imidazolium cation and electrode. It is a measure of the potential-dependent segregation between polar and nonpolar environments in the layers of an IL closest to the electrode.  相似文献   

15.
氧化物单晶化薄膜的制备与表征是研究氧化物表面性质的重要方法,也是模型催化研究的前沿领域。本文主要综述了Fritz-Haber研究所的Hajo Freund小组在过去几年间围绕着以Mo(001)为衬底制备的CaO(001)薄膜模型催化体系而进行的表面结构和化学性质的系列研究。其中既包含了氧化物薄膜研究的共同特点,如界面效应、膜厚效应等,也包含有CaO/Mo体系独特的性质,如Mo的自发掺杂对表面性质的调控作用。在该系列研究中低温扫描隧道显微镜(LT-STM)技术的应用贯穿了方方面面,从原子结构表征到电子性质研究,从杂质缺陷的鉴别到表面物种荷电性质的分析等。STM所获得的微观信息直接从原子分子水平揭示了调控薄膜表面性质的各种控因。特别的,在理论计算的辅助下,不断深化认识氧化物掺杂调控的原理和机制,为设计新型催化剂提供重要思路。  相似文献   

16.
Ionic liquids (ILs) are ambient temperature molten salts, which have attracted considerable attention owing to their unique properties. In this contribution, we review advanced materials composed of ILs and polymers for the basis of a new design protocol to fabricate novel materials. As electrolytes for electrochemical devices, cross‐linked polymers containing ILs (ion gels) are endowed with functional properties inherited from ILs and mechanical consistency derived from polymers. To create such materials, micro‐phase separation of block copolymers and colloidal arrays in the ILs are utilized. Based on the molecular design of task‐specific ILs, the resultant ion gels are applicable as electrolytes for actuator, fuel cell, and secondary battery applications. Thermo‐ and photo‐responsive polymers in ILs are also highlighted, whereby such stimuli elicit changes in the solubility of the self‐assembly of block copolymers and colloidal arrays in the ILs. Further, thermo‐ and photo‐reversible changes in the self‐assembled structure can be exploited to demonstrate sol‐gel transitions and fabricate photo‐healable materials.  相似文献   

17.
A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water. The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time‐resolved in‐situ spectroscopic investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non‐volatile liquid and converting it into a useful bulk chemical, that is, HNO3.  相似文献   

18.
Multilayers of myoglobin (Mb) with ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM]BF4) was assembled on carbon ionic liquid electrode (CILE) based on the electrostatic attraction between the negatively charged Mb and the positively charged imidazolium ion of IL. The CILE was fabricated with 1‐ethyl‐3‐methylimidazolium ethylsulfate ([EMIM]EtOSO3) as the modifier, which exhibited imidazolium ion on the electrode surface. Then Mb molecules were assembled on the surface of CILE step‐by‐step to get a {IL/Mb}n multilayer film modified electrode. UV‐Vis adsorption and FT‐IR spectra indicated that Mb remained its native structure in the IL matrix. In deaerated phosphate buffer solution (pH 7.0) a pair of well‐defined quasi‐reversible redox peaks appeared with the apparent formal potential (E0′) as ‐0.212 V (vs. SCE), which was the characteristic of Mb heme Fe(III)/Fe(II) redox couples. The results indicated that the direct electron transfer of Mb was realized on the modified electrode. The {IL/Mb}n/CILE displayed excellent electrocatalytic ability to the trichloroacetic acid reduction in the concentration range from 2.0 to 22.0 mmol/L with the detection limit of 0.6 mmol/L (3σ). The proposed method provides a new platform to fabricate the third generation biosensor based on the self‐assembly of redox protein with ILs.  相似文献   

19.
多孔质铝阳极氧化膜表面与界面研究   总被引:1,自引:0,他引:1  
铝质材料阳极氧化作为铝质材料最重要的表面改性技术已有几十年历程,并在现代工业中获得了广泛应用[1,’].前人对铝阳极氧化股的结构、组成及生成机理等进行了大量的研究工作[3-6],研究结果表明铝阳极氧化膜具有多孔型和壁垒型二种,其中多孔型铝阳极氧化膜是由非晶态  相似文献   

20.
4‐Carboxyphenyl groups are covalently grafted onto graphene oxide via diazonium chemistry for studying their role on the adsorption of iron oxide nanoparticles. The nanoparticles are deposited via a novel phase‐transfer approach involving specific interactions at the interface between two immiscible solvents. The increased density and the homogeneous distribution of surface carboxyl moieties enable the preparation of a nanocomposite with improved iron oxide distribution and loading. Structure‐properties relationships are investigated by analysing the electrochemical properties of the nanocomposites, which are regarded as promising active materials for application in supercapacitors. It is demonstrated that the nature of the interactions between the components similarly affects the overall electrochemical performances of the nanocomposites and the structure of the materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号