首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One‐electron oxidation of the stibines Aryl3Sb ( 1 , Aryl=2,6‐i Pr2‐4‐OMe‐C6H2; 2 , Aryl=2,4,6‐i Pr3‐C6H2) with AgSbF6 and NaBArylF4 (ArylF=3,5‐(CF3)2C6H3) afforded the first structurally characterized examples of antimony‐centered radical cations 1 .+[BArylF4] and 2 .+[BArylF4]. Their molecular and electronic structures were investigated by single‐crystal X‐ray diffraction, electron paramagnetic resonance spectroscopy (EPR) and UV/Vis absorption spectroscopy, in conjunction with theoretical calculations. Moreover, their reactivity was investigated. The reaction of 2 .+[BArylF4] and p ‐benzoquinone afforded a dinuclear antimony dication salt 3 2+[BArylF4]2, which was characterized by NMR spectroscopy and X‐ray diffraction analysis. The formation of the dication 3 2+ further confirms that the isolated stibine radical cations are antimony‐centered.  相似文献   

2.
The search for main‐group element‐based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element‐centered radicals mainly feature a V‐shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris‐amide ligand. The selective one‐electron reduction of R3E afforded the first stable tricoordinate pnictogen‐centered radical anion salts; the pnictogen atoms retain planar T‐shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3E planes.  相似文献   

3.
Radical anions of a diphosphene with two boryl substituents were isolated and characterized by single‐crystal X‐ray diffraction, electron spin resonance (ESR), and UV/Vis absorption spectroscopy as well as DFT calculations. Structural analysis of the radical anions revealed an elongation of the P=P bond and a contraction of the B−P bonds relative to the neutral diphosphene. The UV/Vis spectra of these radical anions showed a strong absorption in the visible region, which was assigned to SOMO‐related transitions on the basis of DFT calculations. The ESR spectra revealed that the hyperfine coupling constant with the phosphorus nuclei is the smallest that has been reported thus far. The results of the DFT calculations furthermore suggest that this should be attributed to a soaking of electron spin to the vacant p orbitals of the boryl substituents.  相似文献   

4.
The search for main‐group element‐based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element‐centered radicals mainly feature a V‐shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris‐amide ligand. The selective one‐electron reduction of R3E afforded the first stable tricoordinate pnictogen‐centered radical anion salts; the pnictogen atoms retain planar T‐shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3E planes.  相似文献   

5.
Single electron oxidation of 2,3‐diaminocyclopropenones is shown to give rise to stable diaminocyclopropenium oxyl (DACO) radical cations. Cyclic voltammetry reveals reversible oxidations in the range of +0.70–1.10 V (vs. SCE). Computational, EPR, and X‐ray analysis support the view that the oxidized species is best described as a cyclopropenium ion with spin density located on the heteroatom substituents, including 23.5 % on oxygen. The metal–ligand behavior of the DACO radical is also described.  相似文献   

6.
One- and two-electron oxidation of a digallene stabilized by an N-heterocyclic carbene afforded the first stable gallium-based radical cation and dication salts, respectively. Structural analysis and theoretical calculations reveal that the oxidation occurs at the Ga=Ga double bond, leading to removal of π electrons of the double bond and a decrease of the bond order. The spin density of the radical cation mainly locates at the two gallium centers as demonstrated by EPR spectroscopy and theoretical calculations. Moreover, the reactivity of the radical cation salt toward nBu3SnH and cyclo-S8 was studied; a digallium–hydride cation salt containing a Ga−Ga single bond and a gallium sulfide cluster bearing an unprecedented ladder-like Ga4S4 core structure were obtained, respectively.  相似文献   

7.
8.
9.
10.
One‐electron oxidation of 1,4,2,5‐diazadiborinine 1 has been studied. While the reaction of 1 a bearing phenyl groups on the B atoms with AgAl{OC(CF3)3}4 afforded a complex mixture, the same oxidation reaction with 1 b featuring bulky mesityl substituents on the B atoms rendered the corresponding cation radical 2 b as an isolable species. X‐ray diffraction analysis, EPR spectroscopy, and DFT calculations of 2 b revealed the delocalization of the unpaired electron over the entire π‐system of 2 b , as well as a large spin density (0.76 in total) on the two equivalent boron atoms. The chemical trapping reaction of 2 b with p‐benzoquinone and triphenyltin hydride afforded the dicationic species 3 containing two newly formed B?O bonds and the monocationic product 2b‐H containing a B?H bond, respectively, thus confirming the boron‐centered radical reactivity of 2 b .  相似文献   

11.
Stibinyl and bismuthinyl radicals are recognized as representative intermediates of antimony and bismuth compounds, but still elusive in the condensed phase. We successfully synthesized persistent stibinyl and bismuthinyl radicals in solution by facile dissociation of the corresponding dimers with bulky substituents. We characterized the radicals by NMR and UV/Vis spectroscopy and estimated the thermodynamic parameters for the dissociation equilibria. The radicals show n→p (HOMO→SOMO) transition bands at 497 nm (stibinyl) and 543 nm (bismuthinyl) in 3‐methylpentane and react with a stable nitroxyl radical to give the cross‐radical coupling products in good yields.  相似文献   

12.
13.
Radical cations of bis(triarylamine)s, 3 and 4 , in which the triarylamine redox centers are bridged by an ortho ‐phenylene and ortho ‐carborane cluster, respectively, have been prepared to elucidate the difference in intramolecular charge/spin‐transfer (ICT/IST) pathway owing to the two different bridging units affording similar geometrical arrangements between the redox centers. Electrochemistry, absorption spectroscopy, VT‐ESR spectroscopy, and DFT calculations reveal that 3 .+ and 4 .+ are classified into class II and class I mixed‐valence systems, respectively, and therefore, through‐bond and through‐space mechanisms are dominant for the ICT/IST phenomena in 3 .+ and 4 .+, respectively. Moreover, SQUID measurements for dicationic species provide the fact that virtually no spin‐exchange interaction is observed for spins in 4 2+, while the antiferromagnetic interaction for spins in 3 2+, in accordance with the existence of a conjugation pathway for the ortho ‐phenylene bridge.  相似文献   

14.
15.
16.
17.
Salts that contain radical cations of benzidine (BZ), 3,3′,5,5′‐tetramethylbenzidine (TMB), 2,2′,6,6′‐tetraisopropylbenzidine (TPB), and 4,4′‐terphenyldiamine (DATP) have been isolated with weakly coordinating anions [Al(ORF)4]? (ORF=OC(CF3)3) or SbF6?. They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of benzidine or its alkyl‐substituted derivatives in CH2Cl2. The salts were characterized by UV absorption and EPR spectroscopy as well as by their single‐crystal X‐ray structures. Variable‐temperature UV/Vis absorption spectra of BZ . +[Al(ORF)4]? and TMB . +[Al(ORF)4]? in acetonitrile indicate an equilibrium between monomeric free radical cations and a radical‐cation dimer. In contrast, the absorption spectrum of TPB . +SbF6? in acetonitrile indicates that the oxidation of TPB only resulted in a monomeric radical cation. Single‐crystal X‐ray diffraction studies show that in the solid state BZ and its methylation derivative (TMB) form radical‐cation π dimers upon oxidation, whereas that modified with isopropyl groups (TPB) becomes a monomeric free radical cation. By increasing the chain length, π stacks of π dimers are obtained for the radical cation of DATP. The single‐crystal conductivity measurements show that monomerized or π‐dimerized radicals (BZ . +, TMB . +, and TPB . +) are nonconductive, whereas the π‐stacked radical (DATP . +) is conductive. A conduction mechanism between chains through π stacks is proposed.  相似文献   

18.
19.
20.
A large variety of oxovanadium(V) complexes, mononuclear VO(2)(+) and VO(3+) in addition to the dinuclear VO(3+), of the structural type (VOL)(2), (VOHL)(2), VOLHQ, K(VO(2)HL), K(VO(2)H(2)L), or (salampr) (VO(2)L) {where L = Schiff base ligand possessing alkoxo group(s); HQ = 8-hydroxyquinoline; salampr = cation of reduced Schiff base derived from salicylaldehyde and 2-amino-2-methylpropan-1-ol}, bound to alkoxo, phenolate and imine groups have been synthesized in high yields and characterized by several spectral and analytical methods, including single crystal X-ray studies. While the mononuclear VO(2)(+) complexes have been synthesized at alkaline pH, the dinuclear VO(3+) complexes have been synthesized under neutral conditions using alkoxo rich Schiff base ligands. The X-ray structures indicate that the cis-dioxo complexes showed longer V-O(alkoxo) bond lengths compared to the monooxo counterparts. The plot of V-O(phen) bond distances of several VO(3+) complexes vs the lmct showed a near linear correlation with a negative slope. The cyclic voltammograms revealed a reversible V(V)/V(IV) couple with the reduction potentials increasing to more negative ones as the number of alkoxo groups bound to V increases from 1 to 2. Moreover, the cis-dioxo VO(2)(+) complexes are easier to reduce than their monooxo counterparts. The solution stability of these complexes was studied in the presence of added water (1:4, water:solvent), where no decomposition was observed, unlike other Schiff base complexes of V. The conversion of the dioxo complexes to their monooxo counterparts in the presence of catalytic amounts of acid is also demonstrated. The reactivity of alkoxo bound V(V) complexes is also reported. X-ray parameters are as follows. H(4)L(3): monoclinic space group, P2(1)/c; a = 10.480(3), b = 8.719(6), c = 12.954(8) ?; beta = 101.67(4) degrees; V = 1126(1) ?(3); Z = 4; R = 0.060, R(w) = 0.058. Complex 1: monoclinic space group, P2(1)/n; a = 12.988(1), b = 9.306(2), c = 19.730(3) ?; beta = 99.94(1) degrees; V = 2348.9(7) ?(3); Z = 4; R = 0.031, R(w) = 0.027. Complex 2: monoclinic space group, P2(1)/n; a = 12.282(3), b = 11.664(2), c = 12.971(4) ?; beta = 97.89(2) degrees; V = 1840.5(8) ?; Z = 4; R = 0.035, R(w) = 0.038. Complex 5: monoclinic space group, P2(1)/c; a = 17.274(2), b = 6.384(2), c = 16.122(2) ?; beta = 116.67(1) degrees; V = 1588.7(7) ?(3); Z = 4; R = 0.039, R(w) = 0.043. Complex 8: monoclinic space group, P2(1)/c; a = 11.991(1), b = 11.696(4), c = 12.564(3) ?; beta = 110.47(1) degrees; V = 1650.8(8) ?(3); Z = 2; R = 0.045, R(w) = 0.049.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号