首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
Five novel coordination polymers, [(Cu(L1)2OH) · Cl · 3H2O] ( 1 ) [L1 = bis(N‐imidazolyl)methane], [Cd(L1)2(NCS)2] ( 2 ), [Zn(L1)2(NCS)2] ( 3 ), [Cu(L1)2(NO3)2] ( 4 ), and [Cu(L2)1.5(NCS)2] ( 5 ) [L2 = 1,4‐bis(N‐imidazolyl)butane] were obtained from self‐assembly of the corresponding metal salts with flexible ligands and their structures were fully characterized by X‐ray diffraction (XRD) analysis, Fourier Transform Infrared (FT‐IR) spectroscopy, elemental analysis and thermogravimetric (TGA) measurements. X‐ray diffraction analyses revealed that complexes 1 , 2 , 3 , and 4 exhibit 1D double‐stranded chain structures, which result from doubly bridged [CuOH], [M(NCS)2] (M = Cd, Zn), and [Cu(NO3)2] units, respectively. The polymeric copper complex 5 displays 1D ladder structure., These complexes, with the exception of complex 1 , are stable up to 300 °C.  相似文献   

2.
The first 4π‐electron resonance‐stabilized 1,3‐digerma‐2,4‐diphosphacyclobutadiene [LH2Ge2P2] 4 (LH=CH[CHNDipp]2 Dipp=2,6‐iPr2C6H3) with four‐coordinate germanium supported by a β‐diketiminate ligand and two‐coordinate phosphorus atoms has been synthesized from the unprecedented phosphaketenyl‐functionalized N‐heterocyclic germylene [LHGe‐P=C=O] 2 a prepared by salt‐metathesis reaction of sodium phosphaethynolate (P≡C?ONa) with the corresponding chlorogermylene [LHGeCl] 1 a . Under UV/Vis light irradiation at ambient temperature, release of CO from the P=C=O group of 2 a leads to the elusive germanium–phosphorus triply bonded species [LHGe≡P] 3 a , which dimerizes spontaneously to yield black crystals of 4 as isolable product in 67 % yield. Notably, release of CO from the bulkier substituted [LtBuGe‐P=C=O] 2 b (LtBu=CH[C(tBu)N‐Dipp]2) furnishes, under concomitant extrusion of the diimine [Dipp‐NC(tBu)]2, the bis‐N,P‐heterocyclic germylene [DippNC(tBu)C(H)PGe]2 5 .  相似文献   

3.
The reaction of [(η5‐L3)Ru(PPh3)2Cl], where; L3 = C9H7 ( 1 ), C5Me5 (Cp*) ( 2 ) with acetonitrile in the presence of [NH4][PF6] yielded cationic complexes [(η5‐L3)Ru(PPh3)2(CH3CN)][PF6]; L3= C9H7 ([3]PF6) and L3 = C5Me5 ([4]PF6), respectively. Complexes [3]PF6 and [4]PF6 reacts with some polypyridyl ligands viz, 2,3‐bis (α‐pyridyl) pyrazine (bpp), 2,3‐bis (α‐pyridyl) quinoxaline (bpq) yielding the complexes of the formulation [(η5‐L3)Ru(PPh3)(L2)]PF6 where; L3 = C9H7, L2 = bpp, ([5]PF6), L3 = C9H7, L2 = bpq, ([6]PF6); L3 = C5Me5, L2 = bpp, ([7]PF6) and bpq, ([8]PF6), respectively. However reaction of [(η5‐C9H7)Ru(PPh3)2(CH3CN)][PF6] ([3]PF6) with the sterically demanding polypyridyl ligands, viz. 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) or tetra‐2‐pyridyl‐1,4‐pyrazine (tppz) leads to the formation of unexpected complexes [Ru(PPh3)2(L2)(CH3CN)][PF6]2; L2 = tppz ([9](PF6)2), tptz ([11](PF6)2) and [Ru(PPh3)2(L2)Cl][PF6]; L2 = tppz ([10]PF6), tptz ([12]PF6). The complexes were isolated as their hexafluorophosphate salts. They have been characterized on the basis of micro analytical and spectroscopic data. The crystal structures of the representative complexes were established by X‐ray crystallography.  相似文献   

4.
Three pyridyl functionalized bis(pyrazol‐1‐yl)methanes, namely 2‐[(4‐pyridyl)methoxyphenyl] bis(pyrazol‐1‐yl)methane (L1), 2‐[(4‐pyridyl)methoxyphenyl]bis(3,5‐dimethylpyrazol‐1‐yl)methane (L2) and 2‐[(3‐pyridyl)methoxyphenyl]bis(pyrazol‐1‐yl)methane (L3) have been synthesized by the reactions of (2‐hydroxyphenyl)bis(pyrazol‐1‐yl)methanes with chloromethylpyridine. Treatment of these three ligands with R2SnCl2 (R = Et, n‐Bu or Ph) yields a series of symmetric 2:1 adducts of (L)2SnR2Cl2 (L = L1, L2 or L3), which have been confirmed by elemental analysis and NMR spectroscopy. The crystal structures of (L2)2Sn(n‐Bu)2Cl2·0.5C6H14 and (L3)2SnEt2Cl2 determined by X‐ray crystallography show that the functionalized bis(pyrazol‐1‐yl)methane acts as a monodentate ligand through the pyridyl nitrogen atom, and the pyrazolyl nitrogen atoms do not coordinate to the tin atom. The cytotoxic activity of these complexes for Hela cells in vitro was tested. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrido complexes [MnH(CO)3L1–3] [L1 = 1,2‐bis‐(diphenylphosphanoxy)‐ethane ( 1 ); L2 = 1,2‐bis‐(diisopropylphosphanoxy)ethane ( 2 ); L3 = 1,3‐bis‐(diphenylphosphanoxy)‐propane ( 3 )] were prepared by treating [MnH(CO)5] with the appropriate bidentate ligand by heating to reflux. Photoirradiation of a toluene solution of complexes 1 and 2 in the presence of PPhn(OR)3–n (n = 0, 1; R = Me, Et) leads to the replacement of a CO ligand by the corresponding monodentate phosphite or phosphonite ligand to give new hydrido compounds of formula [MnH(CO)2(L1–2)(L)] [L = P(OMe)3 ( 1a – 2a ); P(OEt)3 ( 1b – 2b ); PPh(OMe)2 ( 1c – 2c ); PPh(OEt)2 ( 1d – 2d )]. All complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopy. In case of compounds 2 and 3 , suitable crystals for X‐ray diffraction studies were isolated.  相似文献   

6.
Our attempts to synthesise N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si ( 4 ), Ge ( 5 ), Sn ( 6 )] containing the CH=N imine group (in which L is C,N‐chelating ligand {2‐[(2,6‐iPr2C6H3)N=CH]C6H4}?) yielded 1,1′‐bis(2,6‐diisopropylphenyl)‐2,2′‐spriobi[benzo[c][1,2]azasilole] ( 7 ), 1,1′‐bis(2,6‐diisopropylphenyl)‐2,2′‐spriobi[benzo[c][1,2]azagermole] ( 8 ) and C,N‐chelated homoleptic stannylene L2Sn ( 10 ), respectively. Compounds 7 and 8 are an outcome of a spontaneous double hydrometallation of the two CH=N imine moieties induced by N→M intramolecular coordination (M=Si, Ge) in the absence of any catalyst. In contrast, the diorganotin hydride L2SnH2 ( 6 ) is redox‐unstable and the reduction of the tin centre with the elimination of H2 provided the C,N‐chelated homoleptic stannylene L2Sn ( 10 ). Compounds 7 and 8 were characterised by NMR spectroscopy and X‐ray diffraction analysis. Because the proposed N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si ( 4 ), Ge ( 5 ), Sn ( 6 )] revealed two different types of reduction reactions, DFT calculations were performed to gain an insight into the structures and bonding of the non‐isolable diorganometallic hydrides as well as the products of their subsequent reactions. Furthermore, the thermodynamic profiles of the different reaction pathways with respect to the central metal atom were also investigated.  相似文献   

7.
N-coordinated Ge(II) alkoxides L1(tBuO)Ge ( 1 ), L2(tBuO)Ge ( 2 ) and [L2(OtBu)Ge ⋅ BH3] ( 4 ) were prepared. Effect of either chelating ligands L1 and L2 or Ge→B interaction on strength of the Ge−OtBu bond was studied by insertion reaction of PhNCO. As a result, the Ge(II) carbamate L2{[(tBuO)OC](Ph)N}Ge ( 3 ) was isolated. Alcoholysis exchange reactions of 1 and 2 with substituted phenols were studied to find an easy synthetic protocol for a synthesis of functionalized Ge(II) alkoxides. Reactions yielded Ge(II) alkoxides L1,2(2-Br−C6H4O)Ge ( 5 for L1, 8 for L2), L1,2(2-MeNH−C6H4O)Ge ( 6 for L1, 9 for L2), L1,2(2-Ph2P−C6H4O)Ge ( 7 for L1, 10 for L2), L2(2-Br-3-OH−C6H3O)Ge ( 11 ) and L2(2-NC5H4O)Ge ( 12 ) containing the additional polar groups Y (Y=Br, MeNH, PPh2, OH or N). Finally, phosphane decorated Ge(II) alkoxides 7 and 10 were tested as suitable ligands in reactions with (COD)W(CO)4 and BH3. As a consequence, new complexes [(κ2- 7 )W(CO)4] ( 13 ) and [L1(2-Ph2P ⋅ {BH3}-C6H4O)Ge ⋅ {BH3}] ( 14 ) were isolated. All compounds were characterized by NMR and IR spectroscopy, and compounds 3 , 4 , 9 and 11 were additionally characterized by X-ray diffraction analysis.  相似文献   

8.
As an important class of heterocyclic compounds, 1,3,4‐thiadiazoles have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4‐thiadiazoles with respect to transition metal ions has been little studied. Five new crystalline copper(I) π‐complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single‐crystal X‐ray diffraction and IR spectroscopy. The compounds are bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[(tetrafluoroborato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ‐aqua‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}bis[nitratocopper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ‐aqua‐(hexafluorosilicato)bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I)–acetonitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ‐benzenesulfonato‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I) benzenesulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine (Mepeta ), C6H9N3S, was also structurally characterized. Both Mepeta and 5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine (Pesta ) (denoted L ) reveal a strong tendency to form dimeric {Cu2L 2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta )2}2+ unit allows the CuI atom site to be split into two positions with different metal‐coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O‐atom and hexafluorosilicate F‐atom coordination, resulting in the rare case of a direct CuI…FSiF52− interaction. Extensive three‐dimensional hydrogen‐bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound. To determine the hydrogen‐bond interactions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.  相似文献   

9.
The structures of dichloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}copper(II), [CuCl2(C12H12N4)], and di‐μ‐chloro‐bis(chloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}­cadmium(II)), [Cd2Cl4(C12H12N4)2], show that these compounds have the structural formula [ML(Cl)2]n, where L is 2‐[(5‐methylpyra­zolyl)methyl]benzimidazole. When M is copper, the complex is a monomer (n = 1), with a tetrahedral coordination for the Cu atom. When M is cadmium (n = 2), the complex lies about an inversion centre giving rise to a centrosymmetric dimer in which the Cd atoms are bridged by two chloride ions and are pentacoordinated.  相似文献   

10.
There are challenges in using magnesium coordination complexes as reagents owing to their tendency to adopt varying aggregation states in solution and thus impacting the reactivity of the complexes. Many magnesium complexes are prone to ligand redistribution via Schlenk equilibrium due to the ionic character within the metal–ligand interactions. The role of the supporting ligand is often crucial for providing stability to the heteroleptic complex. Strategies to minimize ligand redistribution in alkaline earth metal complexes could include using a supporting ligand with tunable sterics and electronics to influence the degree of association to the metal atom. Magnesium bis(hexamethyldisilazide) was reacted with salicylaldimines [1L = N‐(2,6‐diisopropylphenyl)salicylaldimine and 2L = 3,5‐di‐tert‐butyl‐N‐(2,6‐diisopropylphenyl)salicylaldimine] in either nondonor (toluene) or donor solvents [tetrahydrofuran (THF) or pyridine]. The structures of the magnesium complexes were studied in the solid state via X‐ray diffraction. In the nondonor solvent, i.e. toluene, the heteroleptic complex bis{μ‐2‐[(2,6‐diisopropylphenyl)iminomethyl]phenolato}‐κ3N,O:O3O:N,O‐bis[(hexamethyldisilazido‐κN)magnesium(II)], [Mg2(C19H22NO)2(C6H18NSi2)2] or [1LMgN(SiMe3)2]2, (1), was favored, while in the donor solvent, i.e. pyridine (pyr), the formation of the homoleptic complex {2,4‐di‐tert‐butyl‐6‐[(2,6‐diisopropylphenyl)iminomethyl]phenolato‐κ2N,O}bis(pyridine‐κN)magnesium(II) toluene monosolvate, [Mg(C27H38NO)2(C5H5N)2]·C5H5N or [{2L2Mg2(pyr)2}·pyr], (2), predominated. Heteroleptic complex (1) was crystallized from toluene, while homoleptic complexes (2) and the previously reported [1L2Mg·THF] [Quinque et al. (2011). Eur. J. Inorg. Chem. pp. 3321–3326] were crystallized from pyridine and THF, respectively. These studies support solvent‐dependent ligand redistribution in solution. In‐situ1H NMR experiments were carried out to further probe the solution behavior of these systems.  相似文献   

11.
The coordination properties of N,N′‐bis[4‐(4‐pyridyl)phenyl]acenaphthenequinonediimine (L1) and N,N′‐bis[4‐(2‐pyridyl)phenyl]acenaphthenequinonediimine (L2) were investigated in self‐assembly with palladium diphosphane complexes [Pd(P^P)(H2O)2](OTf)2 (OTf=triflate) by using various analytical techniques, including multinuclear (1H, 15N, and 31P) NMR spectroscopy and mass spectrometry (P^P=dppp, dppf, dppe; dppp=bis(diphenylphosphanyl)propane, dppf= bis(diphenylphosphanyl)ferrocene, and dppe=bis(diphenylphosphanyl)ethane). Beside the expected trimeric and tetrameric species, the interaction of an equimolar mixture of [Pd(dppp)]2+ ions and L1 also generates pentameric aggregates. Due to the E/Z isomerism of L1, a dimeric product was also observed. In all of these species, which correspond to the general formula [Pd(dppp)L1]n(OTf)2n (n=2–5), the L1 ligand is coordinated to the Pd center only through the terminal pyridyl groups. Introduction of a second equivalent of the [Pd(dppp)]2+ tecton results in coordination to the internal, sterically more encumbered chelating site and induces enhancement of the higher nuclearity components. The presence of higher‐order aggregates (n=5, 6), which were unexpected for the interaction of cis‐protected palladium corners with linear ditopic bridging ligands, has been demonstrated both by mass‐spectrometric and DOSY NMR spectroscopic analysis. The sequential coordination of the [Pd(dppp)]2+ ion is attributed to the dissimilar steric properties of the two coordination sites. In the self‐assembled species formed in a 1:1:1 mixture of [Pd(dppp)]2+/[Pd(dppe)]2+/L1, the sterically more demanding [Pd(dppp)]2+ tectons are attached selectively to the pyridyl groups, whereas the more hindered imino nitrogen atoms coordinate the less bulky dppe complexes, thus resulting in a sterically directed, size‐selective sorting of the metal tectons. The propensity of the new ligands to incorporate hydrogen‐bonded solvent molecules at the chelating site was confirmed by X‐ray diffraction studies.  相似文献   

12.
Two novel tridentate ligands of 2,6‐bis‐[l‐(2,6‐dibromophenylimino) ethyl] pyridine (L1) and2‐acetyl‐6‐[1‐(2,6‐dibromophenylimino) ethyl] pyridine (L2) have been synthesized. The iron(II) complex of L1 and L2 has been characterized with the crystal structure of [Fe(L1)(L2)]2+ [FeCl4]2 CH2Cl2 [monoclinic, P21 (#11), a = 1.0562(4), b = 2.0928(4), c = 1.2914(2) nm, β = 100.12°, V = 2.810(1) nm3 Dc = 1.879 g/cm3 and Z = 2].  相似文献   

13.
The synthesis of two new diphosphonic acid ligands,[ethane‐1, 2‐diylbis(azanediyl)]bis[(4‐chlorophenyl)methylene]diphosphonic acid (L1P), [ethane‐1, 2‐diylbis(azanediyl)]bis[(4‐bromophenyl)methylene]diphosphonic acid (L2P), and their corresponding copper complexes, Cu2(L1P)2 ( 1 ) and Cu2(L2P)2 ( 2 ) are described herein. Complex 2 was structurally characterized with X‐ray single crystal diffraction. The structure of 2 consists of five‐coordinatecopper(II) ions with a distorted square pyramidal arrangement doubly bridged by OPO from phosphonate groups. The Cu–Cu distance is 4.7810(2) Å. The crystal packing is determined by interdinuclear hydrogen bonds, which lead to one‐dimensional chains. The results of thermogravimetric investigations (TG‐DTA), UV/Vis diffuse reflectance, infrared and (1H and 13C) NMR spectroscopy, as well as elemental analyses of compounds 1 and 2 are also presented.  相似文献   

14.
We report here the synthesis of new C,N‐chelated chlorostannylenes and germylenes L3MCl (M=Sn( 1 ), Ge ( 2 )) and L4MCl (M=Sn( 3 ), Ge ( 4 )) containing sterically demanding C,N‐chelating ligands L3, 4 (L3=[2,4‐di‐tBu‐6‐(Et2NCH2)C6H2]?; L4=[2,4‐di‐tBu‐6‐{(C6H3‐2′,6′‐iPr2)N=CH}C6H2]?). Reductions of 1 – 4 yielded three‐coordinate C,N‐chelated distannynes and digermynes [L3, 4M ]2 for the first time ( 5 : L3, M=Sn, 6 : L3, M=Ge, 7 : L4, M=Sn, 8 : L4, M=Ge). For comparison, the four‐coordinate distannyne [L5Sn]2 ( 10 ) stabilized by N,C,N‐chelate L5 (L5=[2,6‐{(C6H3‐2′,6′‐Me2)N?CH}2C6H3]?) was prepared by the reduction of chlorostannylene L5SnCl ( 9 ). Hence, we highlight the role of donor‐driven stabilization of tetrynes. Compounds 1 – 10 were characterized by means of elemental analysis, NMR spectroscopy, and in the case of 1 , 2 , 5 – 7 , and 10 , also by single‐crystal X‐ray diffraction analysis. The bonding situation in either three‐ or four‐coordinate distannynes 5 , 7 , and 10 was evaluated by DFT calculations. DFT calculations were also used to compare the nature of the metal–metal bond in three‐coordinate C,N‐chelating distannyne [L3Sn]2 ( 5 ) and related digermyme [L3Ge]2 ( 6 ).  相似文献   

15.
The title compounds, bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}disilver bis(perchlorate) acetonitrile monosolvate, [Ag2(C18H17N2P)2](ClO4)2·CH3CN, (1), and bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}bis[(nitrato‐κ2O,O)silver], [Ag2(C18H17N2P)2(NO3)2], (2), each contain disilver macrocyclic [Ag2(C18H17N2P)2]2+ cations lying about inversion centres. The cations are constructed by two N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine (DPP) ligands linking two Ag+ cations in a head‐to‐tail fashion. In (1), the unique Ag+ cation has a near‐linear coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands. Two ClO4 anions doubly bridge two metallomacrocycles through Ag...O and N—H...O weak interactions to form a chain extending in the c direction. The half‐occupancy acetonitrile molecule lies with its methyl C atom on a twofold axis and makes a weak N...Ag contact. In (2), there are two independent [Ag(C18H17N2P)]+ cations. The nitrate anions weakly chelate to each Ag+ cation, leading to each Ag+ cation having a distorted tetrahedral coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands, and two chelating nitrate O atoms. Each dinuclear [Ag2(C18H17N2P)2(NO3)2] molecule acts as a four‐node to bridge four adjacent equivalent molecules through N—H...O interactions, forming a two‐dimensional sheet parallel to the bc plane. Each sheet contains dinuclear molecules involving just Ag1 or Ag2 and these two types of sheet are stacked in an alternating fashion. The sheets containing Ag1 all lie near x = , , etc, while those containing Ag2 all lie near x = 0, 1, 2 etc. Thus, the two independent sheets are arranged in an alternating sequence at x = 0, , 1, etc. These two different supramolecular structures result from the different geometric conformations of the templating anions which direct the self‐assembly of the cations and anions.  相似文献   

16.
Hydrocarbon‐bridged Metal Complexes. L Dicarbonyl Cyclopentadienyl Pyridoyl Iron Complexes as Ligands Dicarbonyl‐cyclopentadienyl‐2‐ and 3‐pyridoyl‐iron (L1, L2) and 2,6‐dicarbonyl‐pyridine‐bis(dicarbonyl‐cyclopentadienyl‐iron) (L3) function as ligands in metal complexes and the N,O‐chelates [(OC)4M(L1)] (M = Mo, W, 8 a, b ) and [(Ph3P)2Cu(L1)]+BF4 ( 9 ) were prepared. Monodentate coordination of L1 and L2 through the pyridine N‐atom occurs in the palladium(II) complexes [Cl2Pd(PnBu3)(L1)] ( 10 ), [Cl2Pd(PnBu3)(L2)] ( 11 ) and [Cl2Pd(L2)2] ( 12 ). Ligand L3 forms the O,N,O‐bis(chelate) [Cl2Zn(L3)] ( 13 ). The crystal and molecular structures of L1, 8 b (M = W), 9–11 and 13 were determined by X‐ray diffraction.  相似文献   

17.
《化学:亚洲杂志》2018,13(19):2805-2811
The aqueous self‐assembly of the flexible ligand L bis(1H‐benz[d]imidazole‐1‐yl)methane and cis‐coordinated PtII precursors [(en)Pt2+, (tmeda)Pt2+, en=ethylenediamine, tmeda=N,N,N′,N′‐tetramethylethylenediamine)] led to the formation of the metallacalixarenes with full alternative conformations (e.g., two novel water‐soluble metallacalixarenes [M2L2]4+ and [M3L3]6+ with D2 and D3 symmetry, respectively). Their molecular structures were determined by single crystal X‐ray analyses in solid state. The two metallacalixarenes present different cavity sizes and the [M3L3]6+ cavity encapsulates one NO3. NOESY NMR revealed that the conformational interconversion between 1,3‐alternate conformer in methanol and cone conformer in DMSO was tuned via the synergistic effect between solvent and anion. Guest encapsulation is also discussed.  相似文献   

18.
Three novel fluorene‐containing poly(arylene ethynylene)s with amino‐functionalized side groups were synthesized through the Sonogashira reaction. They were poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐{2,5‐bis[3′‐(N,N‐diethylamino)‐1′‐oxapropyl]‐1,4‐phenylene} ( P1 ), poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene} ( P2 ), and poly({9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐(1,4‐phenylene)) ( P3 ). Through the postquaternization treatment of P1 – P3 with methyl iodide, we obtained their cationic water‐soluble conjugated polyelectrolytes (WSCPs): P1′ – P3′ . The water solubility was gradually improved from P3′ to P1′ with increasing contents of hydrophilic side chains. After examining the ultraviolet–visible absorption and photoluminescence (PL) spectra, fluorescence lifetimes, and dynamic light scattering data, we propose that with the reduction of the water solubility from P1′ to P3′ , they exhibited a gradually increased degree of aggregation in H2O. The PL quantum yields of P1′ – P3′ in H2O displayed a decreasing tendency consistent with the increased degree of aggregation, suggesting that the pronounced degree of aggregation was an important reason for the low PL quantum yields of WSCPs in H2O. Two structurally analogous water‐soluble trimers of P2′ and P3′ , model compounds 2,7‐bis(9″,9″‐bis{6‴‐[(N,N‐diethyl)‐N‐methylammonium] hexyl}‐2″‐fluorenylethynyl)‐9,9‐bis{6′‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}fluorene hexaiodide and 1,4‐bis(9′,9′‐bis{6″‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}‐2′‐fluorenylethynyl)benzene tetraiodide, were synthesized. The amplified fluorescence quenching of these WSCPs by Fe(CN)64− in H2O was studied by comparison with a corresponding analogous trimer. The effects of aggregation on the fluorescence quenching may be two‐edged in these cases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5778–5794, 2006  相似文献   

19.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

20.
Two new CoII coordination polymers, [Co(L1)0.5(hip)]n ( 1 ) and [Co(L2)(mip) · 2H2O]n ( 2 ) [L1 = 1,1′‐(1,4‐butanediyl)bis‐1H‐benzimidazole, L2 = 1,3‐bis(5,6‐dimethylbenzimidazol‐1‐yl)‐2‐propanol, H2hip = 5‐hydroxyisophthalic acid, H2mip = 5‐methylisophthalic acid], were synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, and X‐ray single‐crystal diffraction. Complex 1 exhibits a 3D supramolecular network constructed with 2D (4,4) layer by O–H ··· O hydrogen bonding. Complex 2 has 1D ladder‐like chains, which are further assembled into a 3D supramolecular framework by π–π stacking interactions. In addition, fluorescence and catalytic properties of compounds 1 and 2 were investigated in solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号