首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic nuclear polarization (DNP) increases NMR sensitivity by transferring polarization from electron to nuclear spins. Herein, we demonstrate that electron decoupling with chirped microwave pulses enables improved observation of DNP‐enhanced 13C spins in direct dipolar contact with electron spins, thereby leading to an optimal delay between transients largely governed by relatively fast electron relaxation. We report the first measurement of electron longitudinal relaxation time (T1e) during magic angle spinning (MAS) NMR by observation of DNP‐enhanced NMR signals (T1e=40±6 ms, 40 mM trityl, 4.0 kHz MAS, 4.3 K). With a 5 ms DNP period, electron decoupling results in a 195 % increase in signal intensity. MAS at 4.3 K, DNP, electron decoupling, and short recycle delays improve the sensitivity of 13C in the vicinity of the polarizing agent. This is the first demonstration of recovery times between MAS‐NMR transients being governed by short electron T1 and fast DNP transfer.  相似文献   

2.
Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer--the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron-nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω(0I), where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ω(M) = ω(0S) ± ω(0I), where ω(M), ω(0S) and ω(0I) are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω(0I) > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω(0S(1))-ω(0S(2)) = ω(0I) and ω(M)~ω(0S(1)) or ω(0S(2)), where ω(0S(1)) and ω(0S(2)) are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the external magnetic field, and the electron-electron and electron-nuclear interactions on DNP enhancements.  相似文献   

3.
The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln3+ aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the 1H NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln3+ ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times T1e and T2e. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of T1e, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes.  相似文献   

4.
A potentially biocompatible class of spin‐labeled macromolecules, spin‐labeled (SL) heparins, and their use as nuclear magnetic resonance (NMR) signal enhancers are introduced. The signal enhancement is achieved through Overhauser‐type dynamic nuclear polarization (DNP). All presented SL‐heparins show high 1H DNP enhancement factors up to E=?110, which validates that effectively more than one hyperfine line can be saturated even for spin‐labeled polarizing agents. The parameters for the Overhauser‐type DNP are determined and discussed. A striking result is that for spin‐labeled heparins, the off‐resonant electron paramagnetic resonance (EPR) hyperfine lines contribute a non‐negligible part to the total saturation, even in the absence of Heisenberg spin exchange (HSE) and electron spin‐nuclear spin relaxation (T1ne). As a result, we conclude that one can optimize the use of, for example, biomacromolecules for DNP, for which only small sample amounts are available, by using heterogeneously distributed radicals attached to the molecule.  相似文献   

5.
Nuclear magnetic resonance (NMR) techniques play an essential role in natural science and medicine. In spite of the tremendous utility associated with the small energies detected, the most severe limitation is the low signal‐to‐noise ratio. Dynamic nuclear polarization (DNP), a technique based on transfer of polarization from electron to nuclear spins, has emerged as a tool to enhance sensitivity of NMR. However, the approach in liquids still faces several challenges. Herein we report the observation of room‐temperature, liquid DNP 13C signal enhancements in organic small molecules as high as 600 at 9.4 Tesla and 800 at 1.2 Tesla. A mechanistic investigation of the 13C‐DNP field dependence shows that DNP efficiency is raised by proper choice of the polarizing agent (paramagnetic center) and by halogen atoms as mediators of scalar hyperfine interaction. Observation of sizable DNP of 13CH2 and 13CH3 groups in organic molecules at 9.4 T opens perspective for a broader application of this method.  相似文献   

6.
The kinase inhibitory domain of the cell cycle regulatory protein p27Kip1 (p27) was nuclear spin hyperpolarized using dissolution dynamic nuclear polarization (D‐DNP). While intrinsically disordered in isolation, p27 adopts secondary structural motifs, including an α‐helical structure, upon binding to cyclin‐dependent kinase 2 (Cdk2)/cyclin A. The sensitivity gains obtained with hyperpolarization enable the real‐time observation of 13C NMR signals during p27 folding upon binding to Cdk2/cyclin A on a time scale of several seconds. Time‐dependent intensity changes are dependent on the extent of folding and binding, as manifested in differential spin relaxation. The analysis of signal decay rates suggests the existence of a partially folded p27 intermediate during the timescale of the D‐DNP NMR experiment.  相似文献   

7.
A series of 18 nitroxide biradicals derived from bTurea has been prepared, and their enhancement factors ? (1H) in cross‐effect dynamic nuclear polarization (CE DNP) NMR experiments at 9.4 and 14.1 T and 100 K in a DNP‐optimized glycerol/water matrix (“DNP juice”) have been studied. We observe that ? (1H) is strongly correlated with the substituents on the polarizing agents, and its trend is discussed in terms of different molecular parameters: solubility, average e–e distance, relative orientation of the nitroxide moieties, and electron spin relaxation times. We show that too short an e–e distance or too long a T1e can dramatically limit ? (1H). Our study also shows that the molecular structure of AMUPol is not optimal and its ? (1H) could be further improved through stronger interaction with the glassy matrix and a better orientation of the TEMPO moieties. A new AMUPol derivative introduced here provides a better ? (1H) than AMUPol itself (by a factor of ca. 1.2).  相似文献   

8.
The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transport of hyperpolarization to the bulk via 1H-1H spin diffusion. The efficiency of these steps is critical to obtain high sensitivity gains, but the pathways for polarization transfer in the region near the unpaired electron spins are unclear. Here we report a series of seven deuterated and one fluorinated TEKPol biradicals to probe the effect of deprotonation on MAS DNP at 9.4 T. The experimental results are interpreted with numerical simulations, and our findings support that strong hyperfine couplings to nearby protons determine high transfer rates across the spin diffusion barrier to achieve short build-up times and high enhancements. Specifically, 1H DNP build-up times increase substantially with TEKPol isotopologues that have fewer hydrogen atoms in the phenyl rings, suggesting that these protons play a crucial role transferring the polarization to the bulk. Based on this new understanding, we have designed a new biradical, NaphPol, which yields significantly increased NMR sensitivity, making it the best performing DNP polarizing agent in organic solvents to date.  相似文献   

9.
A method for the synthesis of rigid nitroxide biradicals with various spatial orientations between the radical centers is reported. Diketones were employed as substrates for tin amine protocol (SnAP) reagents to provide the parent spirocyclic diamines. Oxidation by peroxyacids provided the corresponding nitroxide biradicals. A set of four different biradicals with various interelectron distances and torsion angles between the radical planes was synthesized using this method. The exact geometries were determined by X-ray crystallography and the biradicals were investigated by EPR spectroscopy and evaluated for their dynamic nuclear polarization (DNP) performance. 1H-DNP enhancements in the range of 1.2–2.1 at 14.1 Tesla (600 MHz spectrometer) were achieved. This synthetic methodology opens a promising alternative to access nitroxide biradicals with various torsional angles and inter radical distances.  相似文献   

10.
Spectroscopic and biophysical methods for structural determination at atomic resolution are fundamental in studies of biological function. Here we introduce an approach to measure molecular distances in bio‐macromolecules using 19F nuclear spins and nitroxide radicals in combination with high‐frequency (94 GHz/3.4 T) electron–nuclear double resonance (ENDOR). The small size and large gyromagnetic ratio of the 19F label enables to access distances up to about 1.5 nm with an accuracy of 0.1–1 Å. The experiment is not limited by the size of the bio‐macromolecule. Performance is illustrated on synthesized fluorinated model compounds as well as spin‐labelled RNA duplexes. The results demonstrate that our simple but strategic spin‐labelling procedure combined with state‐of‐the‐art spectroscopy accesses a distance range crucial to elucidate active sites of nucleic acids or proteins in the solution state.  相似文献   

11.
Hyperpolarization by dissolution dynamic nuclear polarization (D ‐DNP) offers a way of enhancing NMR signals by up to five orders of magnitude in metabolites and other small molecules. Nevertheless, the lifetime of hyperpolarization is inexorably limited, as it decays toward thermal equilibrium with the nuclear spin‐lattice relaxation time. This lifetime can be extended by storing the hyperpolarization in the form of long‐lived states (LLS) that are immune to most dominant relaxation mechanisms. Levitt and co‐workers have shown how LLS can be prepared for a pair of inequivalent spins by D ‐DNP. Here, we demonstrate that this approach can also be applied to magnetically equivalent pairs of spins such as the two protons of fumarate, which can have very long LLS lifetimes. As in the case of para‐hydrogen, these hyperpolarized equivalent LLS (HELLS) are not magnetically active. However, a chemical reaction such as the enzymatic conversion of fumarate into malate can break the magnetic equivalence and reveal intense NMR signals.  相似文献   

12.
Specific spin labeling allows the site-selective investigation of biomolecules by EPR and DNP enhanced NMR spectroscopy. A novel spin labeling strategy for commercially available Fmoc-amino acids is developed. In this approach, the PROXYL spin label is covalently attached to the hydroxyl side chain of three amino acids hydroxyproline (Hyp), serine (Ser) and tyrosine (Tyr) by a simple three-step synthesis route. The obtained PROXYL containing building-blocks are N-terminally protected by the Fmoc-protection group, which makes them applicable for the use in solid-phase peptide synthesis (SPPS). This approach allows the insertion of the spin label at any desired position during SPPS, which makes it more versatile than the widely used post synthetic spin labeling strategies. For the final building-blocks, the radical activity is proven by EPR. DNP enhanced solid-state NMR experiments employing these building-blocks in a TCE solution show enhancement factors of up to 26 for 1H and 13C (1H→13C cross-polarization). To proof the viability of the presented building-blocks for insertion of the spin label during SPPS the penta-peptide Acetyl-Gly-Ser(PROXYL)-Gly-Gly-Gly was synthesized employing the spin labeled Ser building-block. This peptide could successfully be isolated and the spin label activity proved by EPR and DNP NMR measurements, showing enhancement factors of 12.1±0.1 for 1H and 13.9±0.5 for 13C (direct polarization).  相似文献   

13.
Dynamic nuclear polarization (DNP) magic‐angle spinning (MAS) solid‐state NMR (ssNMR) spectroscopy has the potential to enhance NMR signals by orders of magnitude and to enable NMR characterization of proteins which are inherently dilute, such as membrane proteins. In this work spin‐labeled lipid molecules (SL‐lipids), when used as polarizing agents, lead to large and relatively homogeneous DNP enhancements throughout the lipid bilayer and to an embedded lung surfactant mimetic peptide, KL4. Specifically, DNP MAS ssNMR experiments at 600 MHz/395 GHz on KL4 reconstituted in liposomes containing SL‐lipids reveal DNP enhancement values over two times larger for KL4 compared to liposome suspensions containing the biradical TOTAPOL. These findings suggest an alternative sample preparation strategy for DNP MAS ssNMR studies of lipid membranes and integral membrane proteins.  相似文献   

14.
Cross‐effect (CE) dynamic nuclear polarization (DNP) is a rapidly developing technique that enhances the signal intensities in magic‐angle spinning (MAS) NMR spectra. We report CE DNP experiments at 211, 600, and 800 MHz using a new series of biradical polarizing agents referred to as TEMTriPols, in which a nitroxide (TEMPO) and a trityl radical are chemically tethered. The TEMTriPol molecule with the optimal performance yields a record 1H NMR signal enhancement of 65 at 800 MHz at a concentration of 10 mM in a glycerol/water solvent matrix. The CE DNP enhancement for the TEMTriPol biradicals does not decrease as the magnetic field is increased in the manner usually observed for bis‐nitroxides. Instead, the relatively strong exchange interaction between the trityl and nitroxide moieties determines the magnetic field at which the optimum enhancement is observed.  相似文献   

15.
A variety of analytical techniques, such as scanning electron microscopy and 19F dynamic nuclear polarization (DNP) methods, are applied to characterize asphaltene extracted from MC-800 liquid asphalt in fluorobenzene derivatives at 1.53 mT and at room temperature. Different solvents show variable affinities for the asphaltene surface. The low field EPR spectrum of the asphaltene/hexafluorobenzene sample was recorded. The DNP parameters were determined. Additionally, the interactions between the nuclei of the solvent and the electrons delocalized on the asphaltene are interpreted. Not only dipolar but also scalar interactions between the nuclear spin and the electron spin were found.  相似文献   

16.
The nitroxide‐based free radical 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15N and/or 2H isotopic labeling of 4‐oxo‐TEMPO free radical on 13C DNP of 3 M [1‐13C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13C DNP: 4‐oxo‐TEMPO, 4‐oxo‐TEMPO‐15N, 4‐oxo‐TEMPO‐d16 and 4‐oxo‐TEMPO‐15N,d16. Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13C DNP efficiency of these 15N and/or 2H‐enriched 4‐oxo‐TEMPO free radicals are relatively the same compared with 13C DNP performance of the regular 4‐oxo‐TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13C DNP signals of these samples all doubled in the same manner, and the 13C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4‐oxo‐TEMPO free radicals have negligible effects on the 13C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Detailed dynamic nuclear polarization and electron spin resonance studies were carried out for 3‐carbamoyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl, 3‐carboxy‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl,3‐methoxycarbonyl‐2,2,5,5‐tetramethy pyrolidine‐1‐oxyl nitroxyl radicals and their corresponding deuterated nitroxyl radicals, used in Overhauser‐enhanced magnetic resonance imaging for the first time. The dynamic nuclear polarization parameters such as dynamic nuclear polarization (DNP) factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for deuterated nitroxyl radicals. DNP enhancement increases with agent concentration up to 3 mm and decreases above 3 mm . The proton spin–lattice relaxation time and the longitudinal relaxivity parameters were estimated. The leakage factor increases with increasing agent concentration up to 3 mm and reaches plateau in the region 3–5 mm . The coupling parameter shows the interaction between the electron and nuclear spins to be mainly dipolar in origin. DNP spectrum exhibits that the full width at half maximum values are higher for undeuterated nitroxyl radicals compared with deuterated nitroxyl radicals, which leads to the increase in DNP enhancement. The ESR parameters such as, the line width, line shape, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g‐factor were calculated. The narrow line width was observed for deuterated nitroxyl radicals compared with undeuterated nitroxyl radicals, which leads to the higher saturation parameter value and DNP enhancement. The novelty of the work permits clear understanding of the DNP parameters determining the higher DNP enhancement compared with the undeuterated nitroxyl radicals. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1‐13C]2‐methylpropan‐2‐ol (tert‐butanol) solution free of persistent radicals by using spin‐labeled thermoresponsive hydrophilic polymer networks as polarizing agents. The hyperpolarized 13C signal can be detected for up to 5 min before the spins fully relax to their thermal equilibrium. This approach extends the applicability of spin‐labeled thermoresponsive hydrogel to the dissolution DNP field and highlights its potential as polarizing agent for preparing neat slowly relaxing contrast agents. The hydrogels are especially suited to hyperpolarize deuterated alcohols which can be used for in vivo perfusion imaging.

  相似文献   


19.
Reaction of O2 with a high‐spin mononuclear iron(II) complex supported by a five‐azole donor set yields the corresponding mononuclear non‐heme iron(III)–superoxo species, which was characterized by UV/Vis spectroscopy and resonance Raman spectroscopy. 1H NMR analysis reveals diamagnetic nature of the superoxo complex arising from antiferromagnetic coupling between the spins on the low‐spin iron(III) and superoxide. This superoxo species reacts with H‐atom donating reagents to give a low‐spin iron(III)–hydroperoxo species showing characteristic UV/Vis, resonance Raman, and EPR spectra.  相似文献   

20.
Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) (13)C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the (13)C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the (13)C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving (35,37)Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the (35,37)Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the (13)C Larmor frequency further facilitates the polarization of the (13)C nuclei by spin diffusion. Calculation of the (13)C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号