首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The oxidative [4+2] annulation reaction represents an elegant and versatile synthetic protocol for the construction of six‐membered heterocyclic compounds. Herein, a photoinduced oxidative [4+2] annulation of NH imines and alkenes was developed by utilizing a dual photoredox/cobaloxime catalytic system. Various multisubstituted 3,4‐dihydroisoquinolines can be obtained in good yields. This method is not only obviated the need of stiochiometric amounts of oxidants but also exhibited excellent atom economy by generating H2 as the only byproduct. Remarkably, high regioselectivity and trans diastereoselectivity can be achieved in this transformation even if the Z/E mixture of alkenes were employed.  相似文献   

2.
A rhodium(III)‐catalyzed [3+2]/[5+2] annulation of 4‐aryl 1‐tosyl‐1,2,3‐triazoles with internal alkynes is presented. This transformation provides straightforward access to indeno[1,7‐cd]azepine architectures through a sequence involving the formation of a rhodium(III) azavinyl carbene, dual C(sp2)? H functionalization, and [3+2]/[5+2] annulation.  相似文献   

3.
Stoichiometric C?H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C?H transformations have not been developed. Herein, an iron‐catalyzed annulation of N?H imines and internal alkynes to furnish cis‐3,4‐dihydroisoquinolines is described, and represents the first iron‐carbonyl‐catalyzed C?H activation reaction of arenes. Remarkablely, this is also the first redox‐neutral [4+2] annulation of imines and alkynes proceeding by C?H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C?H bond activation to afford a dinuclear ferracycle and a synergetic diiron‐promoted H‐transfer to the alkyne as the turnover‐determining step.  相似文献   

4.
Despite there being a straightforward approach for the synthesis of 1,2‐dihydropyridines, the transition‐metal‐catalyzed [2+2+2] cycloaddition reaction of imines with alkynes has been achieved only with imines containing an N‐sulfonyl or ‐pyridyl group. Considering the importance of 1,2‐dihydropyridines as useful intermediates in the preparation of a wide range of valuable organic molecules, it would be very worthwhile to provide novel strategies to expand the scope of imines. Herein we report a successful expansion of the scope of imines in nickel‐catalyzed [2+2+2] cycloaddition reactions with alkynes. In the presence of a nickel(0)/PCy3 catalyst, a reaction with N‐benzylidene‐P,P‐diphenylphosphinic amide was developed. Moreover, an application of N‐aryl imines to the reaction was also achieved by adopting N‐heterocyclic carbene ligands. The isolation of an (η2N‐aryl imine)nickel(0) complex containing a 14‐electron nickel(0) center and a T‐shaped 14‐electron five‐membered aza‐nickelacycle is shown. These would be considered as key intermediates of the reaction. The structure of these complexes was unambiguously determined by NMR spectroscopy and X‐ray analyses.  相似文献   

5.
Lihui Sun  Tong Wang  Song Ye 《中国化学》2012,30(1):190-194
In contrast with the reported phosphine‐ and DABCO‐catalyzed [3+2] and [2+2] annulation of allenoates with trifluoromethylketone, the [2+2+2] annulation of allenoates and two molecules of trifluoromethylketone was found under the condition of N‐heterocyclic carbene catalysis.  相似文献   

6.
An effective and pragmatic strategy for the synthesis of structurally diverse indolo[2,3‐c]isoquinolin‐5‐ones has been developed via a Rh(III)‐catalyzed C?H activation and [4+2] annulation reaction of N‐methoxybenzamides and 3‐diazoindolin‐2‐imines. The reaction involves the efficient formation of two new (one C?C and one C?N) bonds under operationally simple conditions and has the benefits of a broad substrate scope.  相似文献   

7.
Catalytic addition of chiral phosphine, that is, (R)‐ or (S)‐SITCP, to an α‐substituted allene ester generated a zwitterionic dipole. Under optimized reaction conditions, this dipole could engage isatine‐derived N‐Boc‐ketimines in a novel mode of [3+2] annulation reaction. Pyrrolinyl spirooxindoles are thus afforded in high yields and with excellent enantioselectivities. The unprecedented annulation reaction successfully facilitated the construction of sp3‐rich and highly substituted 3,2′‐pyrrolidinyl spirooxindoles supporting many chiral centers.  相似文献   

8.
A new metal‐free oxidative radical [2+2+1] carbocyclization of benzene‐linked 1,n‐enynes with two C(sp3) H bonds adjacent to the same heteroatom is described. This method achieves two C(sp3) H oxidative functionalizations and an annulation, thus providing efficient and general access to a variety of fused five‐membered carbocyclic hydrocarbons.  相似文献   

9.
An efficient CpxRhIII‐catalyzed enantioselective alkenyl C?H functionalization/[4+1] annulation of acryl amides and allenes is reported. The described transformation provides straightforward access to enantioenriched α,β‐unsaturated‐γ‐lactams bearing a quaternary stereocenter. The reaction operates under mild conditions, displays a broad functional‐group tolerance, and provides 2H‐pyrrol‐2‐ones with excellent selectivity of up to 97:3 er. Such scaffolds are frequently found in natural products and synthetic bioactive compounds and are of significant synthetic value. It is noteworthy that the allene serves as a one‐carbon unit in the [4+1]‐annulation.  相似文献   

10.
The first highly enantioselective phosphine‐catalyzed formal [4+4] annulation has been developed. In the presence of amino‐acid‐derived phosphines, the unprecedented [4+4] annulations between benzofuran/indole‐derived α,β‐unsaturated imines and allene ketones proceeded smoothly, thus affording azocines, bearing either a benzofuran or an indole moiety, in excellent yields and with nearly perfect enantioselectivities (≥98 % ee in most cases). This work marks the first efficient asymmetric construction of optically enriched eight‐membered rings by phosphine catalysis.  相似文献   

11.
An electron‐deficient CpE rhodium(III) complex bearing a cyclopentadienyl ligand with two ethyl ester substituents catalyzes the tandem [2+2+2] annulation–lactamization of acetanilides with two alkynoates via cleavage of adjacent two C?H bonds to give densely substituted benzo[cd]indolones. The reactions of meta‐methoxy‐substituted acetanilides with two alkynoates also provided benzo[cd]indolones via cleavage of adjacent C?H/C?O bonds. Furthermore, 3,5‐dimethoxyacetanilides reacted with two alkynoates to give dearomatized spiro compounds.  相似文献   

12.
The palladium-catalyzed reaction of 4-iodo-2-quinolones with activated alkynes was investigated. Cyclopenta[de]quinoline-2(1 H)-ones and/or phenanthridine-6(5 H)-ones were obtained through [3+2] annulation involving aromatic C−H activation or [2+2+2] annulation involving vinylic C−H activation, respectively. Reasonable mechanisms for the formation of these annulation products have been proposed based on density functional theory calculations.  相似文献   

13.
An efficient preparation of sulfamate‐fused 2‐aminopyrroles was achieved through an isocyanide‐based three‐component [1+2+2] annulation of isocyanides, dialkyl acetylenedicarboxylates, and sulfamate‐derived cyclic imines in good to excellent yields (up to 99 %). This reaction proceeds smoothly without any activation or modification of substances under neutral and metal‐free conditions. The reaction could also be conveniently performed on a gram scale.  相似文献   

14.
This work reports zinc‐catalyzed [4+2]‐annulation reactions of disubstituted N‐hydroxy allenylamines with nitrosoarenes to afford substituted 1,2‐oxazinan‐3‐ones with a skeletal rearrangement. This annulation is applicable to a reasonable scope of allenylamines and nitrosoarenes. Our control experiments indicate that nitrosobenzene can also implement this annulation through a radical annulation path, but with poor efficiency. Zn(OTf)2 or AgOTf greatly improves the efficiency of this [4+2]‐annulation; the effect of these metal species is discussed in detail.  相似文献   

15.
Described herein is a manganese‐catalyzed dehydrogenative [4+2] annulation of N? H imines and alkynes, a reaction providing highly atom‐economical access to diverse isoquinolines. This transformation represents the first example of manganese‐catalyzed C? H activation of imines; the stoichiometric variant of the cyclomanganation was reported in 1971. The redox neutral reaction produces H2 as the major byproduct and eliminates the need for any oxidants, external ligands, or additives, thus standing out from known isoquinoline synthesis by transition‐metal‐catalyzed C? H activation. Mechanistic studies revealed the five‐membered manganacycle and manganese hydride species as key reaction intermediates in the catalytic cycle.  相似文献   

16.
An efficient tandem reaction for the asymmetric synthesis of six‐membered spirocyclic oxindoles has been successfully developed through a formal [2+2+2] annulation strategy. The amine‐catalysed stereoselective Michael addition of aliphatic aldehydes to electron‐deficient olefinic oxindole motifs gave chiral C3 components, which were further combined with diverse electrophiles (activated olefins or imines) to afford spirocyclic oxindoles with versatile molecular complexity (up to six contiguous stereogenic centres, high diastereo‐ and enantioselectivities).  相似文献   

17.
In the presence of a catalytic amount of GaCl3, dimethyl 2‐(naphthalen‐1‐yl)cyclopropane‐1,1‐dicarboxylate 5 undergoes selective [3+2]‐annulation‐type dimerization to give a polysubstituted cyclopentane containing two naphthalenyl substituents in the vicinal position (Scheme 2). Treatment of the same cyclopropane with an equimolar amount of GaCl3?THF results in dimerization with electrophilic attack on each of the benzene rings to give [3+3] and [3+4] annulation products. The latter represent a new type of dimerization of donor? acceptor cyclopropanes. Finally, under conditions of double catalysis with GaCl3, 3,3,5,5‐tetrasubstituted 4,5‐dihydropyrazole, this cyclopropane‐dicarboxylate undergoes stereospecific dimerization as a result of electrophilic ipso‐attack to give a tetracyclic pentaleno[6a,1‐a]naphthalene derivative (Scheme 5). Possible reaction mechanisms are proposed.  相似文献   

18.
A Cu‐catalyzed [4+1] annulation of N‐aryl‐1,2,3,4‐tetrahydroisoquinolines (N‐aryl THIQs) with α‐diazoketones has been established under oxidative conditions, leading to the construction of a series of indolo[2,1‐a]isoquinolines with generally good yields. The reaction enables dediazotized dicarbonylation of α‐diazoketones, creating direct C(sp3)/C(sp2)?H bond bifunctionalization to access tetracyclic aza‐heterocyclic skeletons.  相似文献   

19.
A rhodium(III)‐catalyzed [3+2]/[5+2] annulation of 4‐aryl 1‐tosyl‐1,2,3‐triazoles with internal alkynes is presented. This transformation provides straightforward access to indeno[1,7‐cd]azepine architectures through a sequence involving the formation of a rhodium(III) azavinyl carbene, dual C(sp2) H functionalization, and [3+2]/[5+2] annulation.  相似文献   

20.
A straightforward approach for the regioselective synthesis of highly functionalized pyrazolo[5,1‐b]purine from the annulation of 6‐bromo‐3‐cyano‐2‐(ethylthio)‐5‐methyl‐7‐oxo‐6,7‐dihydropyrazolo[1,5‐a]pyrimidine with thiourea as a bisnucleophilic reagent under reflux condition in CH3CN in the presence of Et3N has been developed. The N‐alkylation of the synthesis compound was also accomplished. The true regioisomer was determined by 2D‐NOESY NMR spectroscopy, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号