首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocatalytic conversion of CO2 to value-added hydrocarbons is receiving significant attention as a promising way to close the broken carbon-cycle. While most metal catalysts produce C1 species, such as carbon monoxide and formate, the production of various hydrocarbons and alcohols comprising more than two carbons has been achieved using copper (Cu)-based catalysts only. Methods for producing specific C2 reduction outcomes with high selectivity, however, are not available thus far. Herein, the morphological effect of a Cu mesopore electrode on the selective production of C2 products, ethylene or ethane, is presented. Cu mesopore electrodes with precisely controlled pore widths and depths were prepared by using a thermal deposition process on anodized aluminum oxide. With this simple synthesis method, we demonstrated that C2 chemical selectivity can be tuned by systematically altering the morphology. Supported by computational simulations, we proved that nanomorphology can change the local pH and, additionally, retention time of key intermediates by confining the chemicals inside the pores.  相似文献   

2.
Conversion of carbon monoxide to high value‐added ethylene with high selectivity by traditional syngas conversion process is challenging because of the limitation of Anderson‐Schulz–Flory distribution. Herein we report a direct electrocatalytic process for highly selective ethylene production from CO reduction with water over Cu catalysts at room temperature and ambient pressure. An unprecedented 52.7 % Faradaic efficiency of ethylene formation is achieved through optimization of cathode structure to facilitate CO diffusion at the surface of the electrode and Cu catalysts to enhance the C?C bond coupling. The highly selective ethylene production is almost without other carbon‐based byproducts (e.g. C1–C4 hydrocarbons and CO2) and avoids the drawbacks of the traditional Fischer–Tropsch process that always delivers undesired products. This study provides a new and promising strategy for highly selective production of ethylene from the abundant industrial CO.  相似文献   

3.
The direct electrochemical conversion of carbon dioxide (CO2) into multi‐carbon (C2+) products still faces fundamental and technological challenges. While facet‐controlled and oxide‐derived Cu materials have been touted as promising catalysts, their stability has remained problematic and poorly understood. Herein we uncover changes in the chemical and morphological state of supported and unsupported Cu2O nanocubes during operation in low‐current H‐Cells and in high‐current gas diffusion electrodes (GDEs) using neutral pH buffer conditions. While unsupported nanocubes achieved a sustained C2+ Faradaic efficiency of around 60 % for 40 h, the dispersion on a carbon support sharply shifted the selectivity pattern towards C1 products. Operando XAS and time‐resolved electron microscopy revealed the degradation of the cubic shape and, in the presence of a carbon support, the formation of small Cu‐seeds during the surprisingly slow reduction of bulk Cu2O. The initially (100)‐rich facet structure has presumably no controlling role on the catalytic selectivity, whereas the oxide‐derived generation of under‐coordinated lattice defects, can support the high C2+ product yields.  相似文献   

4.
Oxide‐derived (OD) Cu catalysts have high selectivity towards the formation of multi‐carbon products (C2/C3) for aqueous electrochemical CO2 reduction (CO2R). It has been proposed that a large fraction of the initial oxide can be surprisingly resistant to reduction, and these residual oxides play a crucial catalytic role. The stability of residual oxides was investigated by synthesizing 18O‐enriched OD Cu catalysts and testing them for CO2R. These catalysts maintain a high selectivity towards C2/C3 products (ca. 60 %) for up to 5 h in 0.1 m KHCO3 at ?1.0 V vs. RHE. However, secondary‐ion mass spectrometry measurements show that only a small fraction (<1 %) of the original 18O content remains, showing that residual oxides are not present in significant amounts during CO2R. Furthermore, we show that OD Cu can reoxidize rapidly, which could compromise the accuracy of ex situ methods for determining the true oxygen content.  相似文献   

5.
介绍了由CO2+H2合成C2+烃的几种复合催化剂体系的研究进展,比较和评价了复合催化剂体系的活性和选择性及对C2+烃类生成的影响。着重于复合催化剂体系对C4+烃的生成及产物分布的影响并简述反应机理。  相似文献   

6.
Bifunctional Fischer–Tropsch (FT) catalysts that couple uniform‐sized Co nanoparticles for CO hydrogenation and mesoporous zeolites for hydrocracking/isomerization reactions were found to be promising for the direct production of gasoline‐range (C5–11) hydrocarbons from syngas. The Brønsted acidity results in hydrocracking/isomerization of the heavier hydrocarbons formed on Co nanoparticles, while the mesoporosity contributes to suppressing the formation of lighter (C1–4) hydrocarbons. The selectivity for C5–11 hydrocarbons could reach about 70 % with a ratio of isoparaffins to n‐paraffins of approximately 2.3 over this catalyst, and the former is markedly higher than the maximum value (ca. 45 %) expected from the Anderson–Schulz–Flory distribution. By using n‐hexadecane as a model compound, it was clarified that both the acidity and mesoporosity play key roles in controlling the hydrocracking reactions and thus contribute to the improved product selectivity in FT synthesis.  相似文献   

7.
Production of multicarbon products (C2+) from CO2 electroreduction reaction (CO2RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO2RR catalysts that are highly selective for C2+ products via electrolyte‐driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO2 into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO3 solution, with the iodine‐modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm?2 for C2+ products at ?0.9 V vs. RHE. Operando X‐ray absorption spectroscopy and quasi in situ X‐ray photoelectron spectroscopy measurements revealed that the high C2+ selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu+ species, and the adsorbed halides.  相似文献   

8.
Cu catalysts are well-known for their good performance in CO2 conversion. Compared to CO and CH4 production, C2 products have higher volumetric energy densities and are more valuable in industrial applications. In this work, we screened the catalytic ability of C2 production on several 1D Cu atomic chain structures and find that Cu edge-decorated zigzag graphene nanoribbons (Cu−ZGNR) are capable of catalyzing CO2 conversion to ethanol, and CH3CH2OH is the main C2 product with a maximum free energy change of 0.60 eV. The planar tetracoordinate carbon structures in Cu-ZGNR provide unique chemical bonding features for catalytic reaction on the Cu atoms. Detailed mechanism analyses with transition states search show that CO* dimerization is favored against CHO* formation in the reaction. By adjusting the CO* coverage, the selectivity of the C2 product can be enhanced owing to less pronounced steric effects for COCHO*, which is feasible under experimental conditions. This study expands the catalyst family for C2 products from CO2 based on nano carbon structures with new features.  相似文献   

9.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN?), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN? or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C? C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN?, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

10.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

11.
Impregnated and co-precipitated, promoted and unpromoted, bulk and supported iron catalysts were prepared, characterized, and subjected to hydrogenation of CO2 at various pressures (1–2 MPa) and temperatures (573–673 K). Potassium, as an important promoter, enhanced the CO2 uptake and selectivity towards olefins and long-chain hydrocarbons. Al2O3, when added as a structural promoter during co-precipitation, increased CO2 conversion as well as selectivity to C2+ hydrocarbons. Among V, Cr, Mn and Zn promoters, Zn offered the highest selectivity to C2–C4 alkenes. The different episodes involved in the transformation of the catalyst before it reached steady-state were identified, on the co-precipitated catalyst. Using a biomass derived syngas (CO/CO2/H2), CO alone took part in hydrogenation. When enriched with H2, CO2 was also converted to hydrocarbons. The deactivation of impregnated Fe–K/Al2O3 catalyst was found to be due to carbon deposition, whereas that for the precipitated catalyst was due to increase in crystallinity of iron species. The suitability of SiO2, TiO2, Al2O3, HY and ion exchanged NaY as supports was examined for obtaining high activity and selectivity towards light olefins and C2+ hydrocarbons and found Al2O3 to be the best support. A comparative study with Co catalysts revealed the advantages of Fe catalysts for hydrocarbon production by F–T synthesis.  相似文献   

12.
The direct electrochemical conversion of carbon dioxide (CO2) into multi-carbon (C2+) products still faces fundamental and technological challenges. While facet-controlled and oxide-derived Cu materials have been touted as promising catalysts, their stability has remained problematic and poorly understood. Herein we uncover changes in the chemical and morphological state of supported and unsupported Cu2O nanocubes during operation in low-current H-Cells and in high-current gas diffusion electrodes (GDEs) using neutral pH buffer conditions. While unsupported nanocubes achieved a sustained C2+ Faradaic efficiency of around 60 % for 40 h, the dispersion on a carbon support sharply shifted the selectivity pattern towards C1 products. Operando XAS and time-resolved electron microscopy revealed the degradation of the cubic shape and, in the presence of a carbon support, the formation of small Cu-seeds during the surprisingly slow reduction of bulk Cu2O. The initially (100)-rich facet structure has presumably no controlling role on the catalytic selectivity, whereas the oxide-derived generation of under-coordinated lattice defects, can support the high C2+ product yields.  相似文献   

13.
The electrochemical reduction of CO2 into fuels has gained significant attention recently as source of renewable carbon‐based fuels. The unique high selectivity of copper in the electrochemical reduction of CO2 to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO2 on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO2 reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface‐structure‐ and potential‐dependent.  相似文献   

14.
With various contents, Mn was introduced into carbon nanotubes (CNTs) supported cobalt catalysts and the obtained Mn‐Co/CNTs catalysts were investigated for CO hydrogenation to light alkenes and characterized by N2 adsorption, X‐ray diffraction (XRD), X‐ray photoelectron spectra (XPS), H2 temperature programmed reduction (TPR), CO temperature programmed desorption (TPD) and transmission electron microscope (TEM). The results indicate that the addition of a small amount of Mn (0.3 wt%) to CNTs‐supported Co catalyst significantly increased the selectivity of C2–C4 olefins and decreased the selectivity of CH4. However, with further addition of Mn to the cobalt catalysts, the CH4 selectivity decreased obviously along with the increase of the C5+ selectivity. Compared with the unpromoted catalysts, the Mn‐promoted cobalt catalysts increased the C2?–C4?/C20–C40 molar ratio.  相似文献   

15.
Selective conversion of syngas (CO/H2) into C2+ oxygenates is a highly attractive but challenging target. Herein, we report the direct conversion of syngas into methyl acetate (MA) by relay catalysis. MA can be formed at a lower temperature (ca. 473 K) using Cu‐Zn‐Al oxide/H‐ZSM‐5 and zeolite mordenite (H‐MOR) catalysts separated by quartz wool (denoted as Cu‐Zn‐Al/H‐ZSM‐5|H‐MOR) and also at higher temperatures (603–643 K) without significant deactivation using spinel‐structured ZnAl2O4|H‐MOR. The selectivity of MA and acetic acid (AA) reaches 87 % at a CO conversion of 11 % at 643 K. Dimethyl ether (DME) is the key intermediate and the carbonylation of DME results in MA with high selectivity. We found that the relay catalysis using ZnAl2O4|H‐MOR|ZnAl2O4 gives ethanol as the major product, while ethylene is formed with a layer‐by‐layer ZnAl2O4|H‐MOR|ZnAl2O4|H‐MOR combination. Close proximity between ZnAl2O4 and H‐MOR increases ethylene selectivity to 65 %.  相似文献   

16.
Selective conversion of syngas (CO/H2) into C2+ oxygenates is a highly attractive but challenging target. Herein, we report the direct conversion of syngas into methyl acetate (MA) by relay catalysis. MA can be formed at a lower temperature (ca. 473 K) using Cu‐Zn‐Al oxide/H‐ZSM‐5 and zeolite mordenite (H‐MOR) catalysts separated by quartz wool (denoted as Cu‐Zn‐Al/H‐ZSM‐5|H‐MOR) and also at higher temperatures (603–643 K) without significant deactivation using spinel‐structured ZnAl2O4|H‐MOR. The selectivity of MA and acetic acid (AA) reaches 87 % at a CO conversion of 11 % at 643 K. Dimethyl ether (DME) is the key intermediate and the carbonylation of DME results in MA with high selectivity. We found that the relay catalysis using ZnAl2O4|H‐MOR|ZnAl2O4 gives ethanol as the major product, while ethylene is formed with a layer‐by‐layer ZnAl2O4|H‐MOR|ZnAl2O4|H‐MOR combination. Close proximity between ZnAl2O4 and H‐MOR increases ethylene selectivity to 65 %.  相似文献   

17.
Cu-based catalysts have been widely applied in electroreduction of carbon dioxide (CO2ER) to produce multicarbon (C2+) feedstocks (e.g., C2H4). However, the high energy barriers for CO2 activation on the Cu surface is a challenge for a high catalytic efficiency and product selectivity. Herein, we developed an in situ *CO generation and spillover strategy by engineering single Ni atoms on a pyridinic N-enriched carbon support with a sodalite (SOD) topology (Ni-SOD/NC) that acted as a donor to feed adjacent Cu nanoparticles (NPs) with *CO intermediate. As a result, a high C2H4 selectivity of 62.5 % and an industrial-level current density of 160 mA cm−2 at a low potential of −0.72 V were achieved. Our studies revealed that the isolated NiN3 active sites with adjacent pyridinic N species facilitated the *CO desorption and the massive *CO intermediate released from Ni-SOD/NC then overflowed to Cu NPs surface to enrich the *CO coverage for improving the selectivity of CO2ER to C2H4.  相似文献   

18.
Fe modified and un-modified K/Mo2C were prepared and investigated as catalysts for CO hydrogenation reaction. Compared with K/Mo2C catalyst, the addition of Fe increased the production of alcohols, especially the C2+OH. Meanwhile, considerable amounts of C5+ hydrocar- bons and C2= -C4= were formed, whereas methane selectivity greatly decreased. Also, the activity and selectivity of the catalyst were readily affected by the reaction pressure and temperature employed. According to the XPS results, Mo4+ might be responsible for the production of alcohols, whereas the low valence state of Mo species such as Mo0 and/or Mo2+ might be account for the high activity and selectivity toward hydrocarbons.  相似文献   

19.
Single atom alloy (SAA) catalysts have been recently explored for promotion of various heterogeneous catalysis, but it remains unexplored for selective electrocatalytic reduction of carbon dioxide (CO2) into multi-carbon (C2+) products involving C−C coupling. Herein we report a single-atomic Bi decorated Cu alloy (denoted as BiCu-SAA) electrocatalyst that could effectively modulate selectivity of CO2 reduction into C2+ products instead of previous C1 ones. The BiCu-SAA catalyst exhibits remarkably superior selectivity of C2+ products with optimal Faradaic efficiency (FE) of 73.4 % compared to the pure copper nanoparticle or Bi nanoparticles-decorated Cu nanocomposites, and its structure and performance can be well maintained at current density of 400 mA cm−2 under the flow cell system. Based on our in situ characterizations and density functional theory calculations, the BiCu-SAA is found to favor the activation of CO2 and subsequent C−C coupling during the electrocatalytic reaction, as should be responsible for its extraordinary C2+ selectivity.  相似文献   

20.
以对苯二甲酸(H2BDC)为配体、乙酸钴为Co源、水作溶剂,通过共沉淀法合成了金属有机框架材料(Co-BDC MOFs);以其为前驱体分别在乙炔和氩气氛下采用化学气相沉积法制备了核壳结构Co@C催化剂。结合XRD、氮吸附、SEM、TEM、XPS、TGA和Raman光谱等手段对Co@C催化剂的结构和组成进行了表征,考察了该催化剂在费托合成反应中的活性及稳定性。结果表明,炭化气氛对炭层结构的石墨化程度有较大影响,而对金属Co核的物相结构和粒径影响较小;乙炔气氛有助于形成多孔的石墨炭壳,从而促进烃链的生长,Co@C-C2H2催化剂上的C5+烃产物选择性高达82.66%,反应过程中催化剂物相由单相金属Co转变为金属Co与Co2C的混合相,且无失活现象发生,表明Co2C具有较高的费托反应催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号