首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To recycle rusty stainless-steel meshes (RSSM) and meet the urgent requirement of developing high-performance cathodes for potassium-ion batteries (KIB), we demonstrate a new strategy to fabricate flexible binder-free KIB electrodes via transformation of the corrosion layer of RSSM into compact stack-layers of Prussian blue (PB) nanocubes (PB@SSM). When further coated with reduced graphite oxide (RGO) to enhance electric conductivity and structural stability, the low-cost, stable, and binder-free RGO@PB@SSM cathode exhibits excellent electrochemical performances for KIB, including high capacity (96.8 mAh g−1), high discharge voltage (3.3 V), high rate capability (1000 mA g−1; 42 % capacity retention), and outstanding cycle stability (305 cycles; 75.1 % capacity retention).  相似文献   

2.
《中国化学》2017,35(10):1575-1585
Binder‐free, nano‐sized needlelike MnO2 ‐submillimeter‐sized reduced graphene oxide (nMnO2‐srGO ) hybrid films with abundant porous structures were fabricated through electrophoretic deposition and subsequent thermal annealing at 500 °C for 2 h. The as‐prepared hybrid films exhibit a unique hierarchical morphology, in which nMnO2 with a diameter of 20—50 nm and a length of 300—500 nm is randomly anchored on both sides of srGO . When evaluated as binder‐free anodes for lithium‐ion half‐cell, the nMnO2‐srGO composites with a content of 76.9 wt% MnO2 deliver a high capacity of approximately 1652.2 mA •h•g−1 at a current density of 0.1 A•g−1 after 200 cycles. The high capacity remains at 616.8 mA •h•g−1 (ca. 65.1% capacity retention) at a current density as high as 4 A•g−1. The excellent electrochemical performance indicates that the nMnO2‐srGO hybrid films could be a promising anode material for lithium ion batteries (LIBs ).  相似文献   

3.
《中国化学》2017,35(12):1844-1852
The binder‐free composite films of reduced graphene oxide (rGO ) and activated carbon derived from cotton (aCFC ) have been fabricated and used as electrodes for electrochemical capacitors (ECs ) to avoid the decrease of capacitive performance in traditional process caused by the additional binder. The optimal aCFC is prepared at 850 °C when the mass ratio of carbon and potassium hydroxide is 1 to 4. The optimal composite film prepared from the mass ratio of aCFC /GO =2/1 exhibits porous structure, and has a specific surface area of 849.6 m2•g−1 and a total pore volume of 0.61 mL •g−1. Based on the two‐electrode system testing in 6.0 mol/L KOH electrolyte, the optimal composite has specific capacitance of about 202 F•g−1, 374 mF •cm−2 and 116 F•cm−3 in terms of mass, area and volume, and shows excellent rate capability and good cyclic stability (91.7% retention of the initial capacitance after 5000 cycles). Furthermore, the assembled solid‐state ECs by using KOH /polyvinyl alcohol as electrolyte show good mechanical stability and capacitive performances after repeated bending cycles. It is proved that this method is effective to fabricate binder‐free electrodes for ECs and will open up a novel route for the reuse of waste cotton.  相似文献   

4.
Flexible lithium‐ion batteries (LIBs) have recently attracted increasing attention with the fast development of bendable electronic systems. Herein, a facile and template‐free solvothermal method is presented for the fabrication of hybrid yolk–shell CoS2 and nitrogen‐doped graphene (NG) sheets. The yolk–shell architecture of CoS2 encapsulated with NG coating is designed for the dual protection of CoS2 to address the structural and interfacial stability concerns facing the CoS2 anode. The as‐prepared composite can be assembled into a film, which can be used as a binder‐free and flexible electrode for LIBs that does not require any carbon black conducting additives or current collectors. When evaluating lithium‐storage properties, such a flexible electrode exhibits a high specific capacity of 992 mAh g?1 in the first reversible discharge capacity at a current rate of 100 mA g?1 and high reversible capacity of 882 mAh g?1 after 150 cycles with excellent capacity retention of 89.91 %. Furthermore, a reversible capacity as high as 655 mAh g?1 is still achieved after 50 cycles even at a high rate of 5 C due to the yolk–shell structure and NG coating, which not only provide short Li‐ion and electron pathways, but also accommodate large volume variation.  相似文献   

5.
Nanostructured NiCo2O4 is directly grown on the surface of three‐dimensional graphene‐coated nickel foam (3D‐GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder‐free lithium‐ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder‐free electrode structures. The flower‐type NiCo2O4 demonstrates high reversible discharge capacity (1459 mAh g?1 at 200 mA g?1) and excellent cyclability with around 71 % retention of the reversible capacity after 60 cycles, which are superior to the sheet‐type NiCo2O4. Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well‐preserved connection between the active materials and the current collector, a short lithium‐ion diffusion path, and fast electrolyte transfer in the binder‐free NiCo2O4‐coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder‐free NiCo2O4/3D‐GNF hybrid a potential material for commercial applications.  相似文献   

6.
We have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.  相似文献   

7.
Polydopamine (PDA), which is biodegradable and is derived from naturally occurring products, can be employed as an electrode material, wherein controllable partial oxidization plays a key role in balancing the proportion of redox‐active carbonyl groups and the structural stability and conductivity. Unexpectedly, the optimized PDA derivative endows lithium‐ion batteries (LIBs) or sodium‐ion batteries (SIBs) with superior electrochemical performances, including high capacities (1818 mAh g?1 for LIBs and 500 mAh g?1 for SIBs) and good stable cyclabilities (93 % capacity retention after 580 cycles for LIBs; 100 % capacity retention after 1024 cycles for SIBs), which are much better than those of their counterparts with conventional binders.  相似文献   

8.
Potassium‐ion batteries (KIBs) are plagued by a lack of materials for reversible accommodation of the large‐sized K+ ion. Herein we present, the Bi anode in combination with the dimethoxyethane‐(DME) based electrolyte to deliver a remarkable capacity of ca. 400 mAh g?1 and long cycle stability with three distinct two‐phase reactions of Bi? KBi2?K3Bi2?K3Bi. These are ascribed to the gradually developed three‐dimensional (3D) porous networks of Bi, which realizes fast kinetics and tolerance of its volume change during potassiation and depotassiation. The porosity is linked to the unprecedented movement of the surface Bi atoms interacting with DME molecules, as suggested by DFT calculations. A full KIB of Bi//DME‐based electrolyte//Prussian blue of K0.72Fe[Fe(CN)6] is demonstrated to present large energy density of 108.1 Wh kg?1 with average discharge voltage of 2.8 V and capacity retention of 86.5 % after 350 cycles.  相似文献   

9.
Wide‐scale exploitation of renewable energy requires low‐cost efficient energy storage devices. The use of metal‐free, inexpensive redox‐active organic materials represents a promising direction for environmental‐friendly, cost‐effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g−1 and stable capacity retention about 99.7 % per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio‐electrochemical process of quinones in nature, using such a bio‐inspired organic compound in batteries enables access to greener and more sustainable energy‐storage technology.  相似文献   

10.
P2‐type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2‐type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2‐type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau‐free P2‐type cathode‐Na0.85Li0.12Ni0.22Mn0.66O2 (P2‐NLNMO) was developed. The complete solid‐solution reaction over a wide voltage range ensures both fast Na+ mobility (10?11 to 10?10 cm2 s?1) and small volume variation (1.7 %). The high sodium content P2‐NLNMO exhibits a higher reversible capacity of 123.4 mA h g?1, superior rate capability of 79.3 mA h g?1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid‐solution reaction are critical to realizing high‐performance P2‐type cathodes for sodium‐ion batteries.  相似文献   

11.
Low storage capacity and poor cycling stability are the main drawbacks of the electrode materials for sodium‐ion (Na‐ion) batteries, due to the large radius of the Na ion. Here we show that micro‐structured molybdenum disulfide (MoS2) can exhibit high storage capacity and excellent cycling and rate performances as an anode material for Na‐ion batteries by controlling its intercalation depth and optimizing the binder. The former method is to preserve the layered structure of MoS2, whereas the latter maintains the integrity of the electrode during cycling. A reversible capacity of 90 mAh g?1 is obtained on a potential plateau feature when less than 0.5 Na per formula unit is intercalated into micro‐MoS2. The fully discharged electrode with sodium alginate (NaAlg) binder delivers a high reversible capacity of 420 mAh g?1. Both cells show excellent cycling performance. These findings indicate that metal chalcogenides, for example, MoS2, can be promising Na‐storage materials if their operation potential range and the binder can be appropriately optimized.  相似文献   

12.
Porous carbon with high specific surface area (SSA), a reasonable pore size distribution, and modified surface chemistry is highly desirable for application in energy storage devices. Herein, we report the synthesis of nitrogen‐containing mesoporous carbon with high SSA (1390 m2 g?1), a suitable pore size distribution (1.5–8.1 nm), and a nitrogen content of 4.7 wt % through a facile one‐step self‐assembly process. Owing to its unique physical characteristics and nitrogen doping, this material demonstrates great promise for application in both supercapacitors and encapsulating sulfur as a superior cathode material for lithium–sulfur batteries. When deployed as a supercapacitor electrode, it exhibited a high specific capacitance of 238.4 F g?1 at 1 A g?1 and an excellent rate capability (180 F g?1, 10 A g?1). Furthermore, when an NMC/S electrode was evaluated as the cathode material for lithium–sulfur batteries, it showed a high initial discharge capacity of 1143.6 mA h g?1 at 837.5 mA g?1 and an extraordinary cycling stability with 70.3 % capacity retention after 100 cycles.  相似文献   

13.
Aqueous zinc‐ion batteries (ZIBs) have become the highest potential energy storage system for large‐scale applications owing to the high specific capacity, good safety and low cost. In this work, a NASICON‐type Na3V2(PO4)3 cathode modified by a uniform carbon layer (NVP/C) has been synthesized via a facile solid‐state method and exhibited significantly improved electrochemical performance when working in an aqueous ZIB. Specifically, the NVP/C cathode shows an excellent rate capacity (e. g., 48 mAh g?1 at 1.0 A g?1). Good cycle stability is also achieved (e. g., showing a capacity retention of 88% after 2000 cycles at 1.0 A g?1). Furthermore, the Zn2+ (de)intercalation mechanism in the NVP cathode has been determined by various ex‐situ techniques. In addition, a Zn||NVP/C pouch cell has been assembled, delivering a high capacity of 89 mAhg?1 at 0.2 A g?1 and exhibiting a superior long cycling stability.  相似文献   

14.
In this paper we report the construction of a hollow microtubular triazine‐ and benzobisoxazole‐based covalent organic framework (COF) presenting a sponge‐like shell through a template‐free [3+2] condensation of the planar molecules 2,4,6‐tris(4‐formylphenyl)triazine (TPT‐3CHO) and 2,5‐diaminohydroquinone dihydrochloride (DAHQ‐2HCl). The synthesized COF exhibited extremely high crystallinity, a high surface area (ca. 1855 m2 g?1), and ultrahigh thermal stability. Interestingly, a time‐dependent study of the formation of the hollow microtubular COF having a sponge‐like shell revealed a transformation from initial ribbon‐like crystallites into a hollow tubular structure, and confirmed that the hollow nature of the synthesized COF was controlled by inside‐out Ostwald ripening, while the non‐interaction of the crystallites on the outer surface was responsible for the sponge‐like surface of the tubules. This COF exhibited significant supercapacitor performance: a high specific capacitance of 256 F g?1 at a current density of 0.5 A g?1, excellent cycling stability (98.8 % capacitance retention over 1850 cycles), and a high energy density of 43 Wh kg?1. Such hollow structural COFs with sponge‐like shells appear to have great potential for use as high‐performance supercapacitors in energy storage applications.  相似文献   

15.
《化学:亚洲杂志》2017,12(1):116-121
Antimony/porous biomass carbon nanocomposites have been prepared by a chemical reduction method and applied as anodes for sodium‐ion batteries. The porous biomass carbon derived from a black fungus had a large Brunauer–Emmett–Teller (BET) surface area of 2233 m2 g−1 in which antimony nanoparticles were uniformly distributed in the porous carbon. The as‐prepared antimony/porous biomass carbon nanocomposites exhibited a high reversible sodium storage capacity of 567 mA h g−1 at a current density of 100 mA g−1, extended cycling stability, and good rate capability.  相似文献   

16.
Application of organic electrode materials in rechargeable batteries has attracted great interest because such materials contain abundant carbon, hydrogen, and oxygen elements. However, organic electrodes are highly soluble in organic electrolytes. An organic electrode of 2,3,5,6‐tetraphthalimido‐1,4‐benzoquinone (TPB) is reported in which rigid groups coordinate to a molecular benzoquinone skeleton. The material is insoluble in aprotic electrolyte, and demonstrates a high capacity retention of 91.4 % (204 mA h g−1) over 100 cycles at 0.2 C. The extended π‐conjugation of the material contributes to enhancement of the electrochemical performance (155 mA h g−1 at 10 C). Moreover, density functional theory calculations suggest that favorable synergistic reactions between multiple carbonyl groups and lithium ions can enhance the initial lithium ion intercalation potential. The described approach may provide a novel entry to next‐generation organic electrode materials with relevance to lithium‐ion batteries.  相似文献   

17.
An aligned and laminated sulfur‐absorbed mesoporous carbon/carbon nanotube (CNT) hybrid cathode has been developed for lithium–sulfur batteries with high performance. The mesoporous carbon acts as sulfur host and suppresses the diffusion of polysulfide, while the CNT network anchors the sulfur‐absorbed mesoporous carbon particles, providing pathways for rapid electron transport, alleviating polysulfide migration and enabling a high flexibility. The resulting lithium–sulfur battery delivers a high capacity of 1226 mAh g−1 and achieves a capacity retention of 75 % after 100 cycles at 0.1 C. Moreover, a high capacity of nearly 900 mAh g−1 is obtained for 20 mg cm−2, which is the highest sulfur load to the best of our knowledge. More importantly, the aligned and laminated hybrid cathode endows the battery with high flexibility and its electrochemical performances are well maintained under bending and after being folded for 500 times.  相似文献   

18.
Precisely carving of multi‐shelled manganese–cobalt oxide hollow dodecahedra (Co/Mn‐HD) with shell number up to three is achieved by a controlled calcination of the Mn‐doped zeolitic imidazolate framework ZIF‐67 precursor (Co/Mn‐ZIF). The unique multi‐shelled and polycrystalline structure not only provides a very large electrochemically active surface area (EASA), but also enhances the structural stability of the material. The residual C and N in the final structures might aid stability and increase their conductivity. When used in alkaline rechargeable battery, the triple‐shelled Co/Mn‐HD exhibits high electrochemical performance, reversible capacity (331.94 mAh g?1 at 1 Ag?1), rate performance (88 % of the capacity can be retained with a 20‐fold increase in current density), and cycling stability (96 % retention over 2000 cycles).  相似文献   

19.
Lithium‐rich layered oxides are promising cathode materials for lithium‐ion batteries and exhibit a high reversible capacity exceeding 250 mAh g−1. However, voltage fade is the major problem that needs to be overcome before they can find practical applications. Here, Li1.2Mn0.54Ni0.13Co0.13O2 (LLMO) oxides are subjected to nanoscale LiFePO4 (LFP) surface modification. The resulting materials combine the advantages of both bulk doping and surface coating as the LLMO crystal structure is stabilized through cationic doping, and the LLMO cathode materials are protected from corrosion induced by organic electrolytes. An LLMO cathode modified with 5 wt % LFP (LLMO–LFP5) demonstrated suppressed voltage fade and a discharge capacity of 282.8 mAh g−1 at 0.1 C with a capacity retention of 98.1 % after 120 cycles. Moreover, the nanoscale LFP layers incorporated into the LLMO surfaces can effectively maintain the lithium‐ion and charge transport channels, and the LLMO–LFP5 cathode demonstrated an excellent rate capacity.  相似文献   

20.
《化学:亚洲杂志》2017,12(1):36-40
N‐doped mesoporous carbon‐capped MoO2 nanobelts (designated as MoO2@NC) were synthesized and applied to lithium‐ion storage. Owing to the stable core–shell structural framework and conductive mesoporous carbon matrix, the as‐prepared MoO2@NC shows a high specific capacity of around 700 mA h g−1 at a current of 0.5 A g−1, excellent cycling stability up to 100 cycles, and superior rate performance. The N‐doped mesoporous carbon can greatly improve the conductivity and provide uninhibited conducting pathways for fast charge transfer and transport. Moreover, the core–shell structure improved the structural integrity, leading to a high stability during the cycling process. All of these merits make the MoO2@NC to be a suitable and promising material for lithium ion battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号