首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Understanding the composition, function and regulation of complex cellular systems requires tools that quantify the expression of multiple proteins at their native cellular context. Here, we report a highly sensitive and accurate protein in situ profiling approach using off-the-shelf antibodies and cleavable fluorescent tyramide (CFT). In each cycle of this method, protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and CFT. Subsequently, the fluorophores are efficiently cleaved by mild chemical reagents, which simultaneously deactivate HRP. Through reiterative cycles of protein staining, fluorescence imaging, fluorophore cleavage, and HRP deactivation, multiplexed protein quantification in single cells in situ can be achieved. We designed and synthesized the high-performance CFT, and demonstrated that over 95% of the staining signals can be erased by mild chemical reagents while preserving the integrity of the epitopes on protein targets. Applying this method, we explored the protein expression heterogeneity and correlation in a group of genetically identical cells. With the high signal removal efficiency, this approach also enables us to accurately profile proteins in formalin-fixed paraffin-embedded (FFPE) tissues in the order of low to high and also high to low expression levels.  相似文献   

2.
Direct cellular imaging of the localization and dynamics of biomolecules helps to understand their function and reveals novel mechanisms at the single‐cell resolution. In contrast to routine fluorescent‐protein‐based protein imaging, technology for RNA imaging remains less well explored because of the lack of enabling technology. Herein, we report the development of an aptamer‐initiated fluorescence complementation (AiFC) method for RNA imaging by engineering a green fluorescence protein (GFP)‐mimicking turn‐on RNA aptamer, Broccoli, into two split fragments that could tandemly bind to target mRNA. When genetically encoded in cells, endogenous mRNA molecules recruited Split‐Broccoli and brought the two fragments into spatial proximity, which formed a fluorophore‐binding site in situ and turned on fluorescence. Significantly, we demonstrated the use of AiFC for high‐contrast and real‐time imaging of endogenous RNA molecules in living mammalian cells. We envision wide application and practical utility of this enabling technology to in vivo single‐cell visualization and mechanistic analysis of macromolecular interactions.  相似文献   

3.
Protein glycosylation is a ubiquitous post‐translational modification that is involved in the regulation of many aspects of protein function. In order to uncover the biological roles of this modification, imaging the glycosylation state of specific proteins within living cells would be of fundamental importance. To date, however, this has not been achieved. Herein, we demonstrate protein‐specific detection of the glycosylation of the intracellular proteins OGT, Foxo1, p53, and Akt1 in living cells. Our generally applicable approach relies on Diels–Alder chemistry to fluorescently label intracellular carbohydrates through metabolic engineering. The target proteins are tagged with enhanced green fluorescent protein (EGFP). Förster resonance energy transfer (FRET) between the EGFP and the glycan‐anchored fluorophore is detected with high contrast even in presence of a large excess of acceptor fluorophores by fluorescence lifetime imaging microscopy (FLIM).  相似文献   

4.
The fluorescence emission of the dual‐fluorophore Ca2+ ion sensor molecule, calcium‐green 2 (CG‐2), has been characterized using dual‐polarization imaging at the single‐molecule level. By comparing the fluorescence intensity of individual CG‐2 molecules in two mutually orthogonal polarization image channels, information about the relative orientation of the two constituent fluorophores in the molecule is obtained. Experimental results from polarization measurements are compared with those predicted from a geometric model based on coupled‐fluorophores that are randomly distributed in space. The results confirm previous optical spectroscopy‐based predictions of the orientation of CG‐2′s fluorophores, and the general applications of this dual‐polarization imaging approach for characterizing the optical properties of molecules containing multiple fluorophores is discussed.  相似文献   

5.
The site‐specific modification of proteins with fluorophores can render a protein fluorescent without compromising its function. To avoid self‐quenching from multiple fluorophores installed in close proximity, we used Holliday junctions to label proteins site‐specifically. Holliday junctions enable modification with multiple fluorophores at reasonably precise spacing. We designed a Holliday junction with three of its four arms modified with a fluorophore of choice and the remaining arm equipped with a dibenzocyclooctyne substituent to render it reactive with an azide‐modified fluorescent single‐domain antibody fragment or an intact immunoglobulin produced in a sortase‐catalyzed reaction. These fluorescent Holliday junctions improve fluorescence yields for both single‐domain and full‐sized antibodies without deleterious effects on antigen binding.  相似文献   

6.
Photoactivatable fluorophores are useful tools in live‐cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle‐specific live‐cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water‐soluble, non‐cytotoxic, cell‐permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre‐activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single‐cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single‐ or multi‐cell labeling experiments.  相似文献   

7.
Chemical protein synthesis and biorthogonal modification chemistries allow production of unique proteins for a range of biological studies. Bond‐forming reactions for site‐selective protein labeling are commonly used in these endeavors. Selective bond‐cleavage reactions, however, are much less explored and still pose a great challenge. In addition, most of studies with modified proteins prepared by either total synthesis or semisynthesis have been applied mainly for in vitro experiments with very limited extension to live cells. Reported here is an approach for studying uniquely modified proteins containing a traceless cell delivery unit and palladium‐based cleavable element for chemical activation, and monitoring the effect of these proteins in live cells. This approach is demonstrated for the synthesis of a caged ubiquitin‐aldehyde, which was decaged for the inhibition of deubiquitinases in live cells.  相似文献   

8.
9.
Single‐molecule fluorescence super‐resolution imaging and tracking provide nanometer‐scale information about subcellular protein positions and dynamics. These single‐molecule imaging experiments can be very powerful, but they are best suited to high‐copy number proteins where many measurements can be made sequentially in each cell. We describe artifacts associated with the challenge of imaging a protein expressed in only a few copies per cell. We image live Bacillus subtilis in a fluorescence microscope, and demonstrate that under standard single‐molecule imaging conditions, unlabeled B. subtilis cells display punctate red fluorescent spots indistinguishable from the few PAmCherry fluorescent protein single molecules under investigation. All Bacillus species investigated were strongly affected by this artifact, whereas we did not find a significant number of these background sources in two other species we investigated, Enterococcus faecalis and Escherichia coli. With single‐molecule resolution, we characterize the number, spatial distribution, and intensities of these impurity spots.  相似文献   

10.
Live‐cell labeling, super‐resolution microscopy, single‐molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N‐nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA‐based small interaction pairs described so far. Coupled to bright organic fluorophores with fine‐tuned photophysical properties, the super‐chelator probes were delivered into human cells by chemically gated nanopores. These super‐chelators permit kinetic profiling, multiplexed labeling of His6‐ and His12‐tagged proteins as well as single‐molecule‐based super‐resolution imaging.  相似文献   

11.
Protein labeling with synthetic fluorescent probes is a key technology in chemical biology and biomedical research. A sensitive and efficient modular labeling approach (SLAP) was developed on the basis of a synthetic small‐molecule recognition unit (Ni‐trisNTA) and the genetically encoded minimal protein His6‐10‐tag. High‐density protein tracing by SLAP was demonstrated. This technique allows super‐resolution fluorescence imaging and fulfills the necessary sampling criteria for single‐molecule localization‐based imaging techniques. It avoids masking by large probes, for example, antibodies, and supplies sensitive, precise, and robust size analysis of protein clusters (nanodomains).  相似文献   

12.
This work develops a site‐specific duplexed luminescence resonance energy transfer system on cell surface for simultaneous imaging of two kinds of monosaccharides on a specific protein by single near‐infrared excitation. The single excitation‐duplexed imaging system utilizes aptamer modified upconversion luminescent nanoparticles as an energy donor to target the protein, and two fluorescent dye acceptors to tag two kinds of cell surface monosaccharides by a dual metabolic labeling technique. Upon excitation at 980 nm, only the dyes linked to protein‐specific glycans can be lit up by the donor by two parallel energy transfer processes, for in situ duplexed imaging of glycoforms on specific protein. Using MUC1 as the model, this strategy can visualize distinct glycoforms of MUC1 on various cell types and quantitatively track terminal monosaccharide pattern. This approach provides a versatile platform for profiling protein‐specific glycoforms, thus contributing to the study of the regulation mechanisms of protein functions by glycosylation.  相似文献   

13.
Antibody–drug conjugates (ADCs) of defined structure hold great promise for cancer therapies, but further advances are constrained by the complex structures of full‐sized antibodies. Camelid‐derived single‐domain antibody fragments (VHHs or nanobodies) offer a possible solution to this challenge by providing expedited target screening and validation through switching between imaging and therapeutic activities. We used a nanobody (VHH7) specific for murine MHC‐II and rendered “sortase‐ready” for the introduction of oligoglycine‐modified cytotoxic payloads or NIR fluorophores. The VHH7 conjugates outcompeted commercial monoclonal antibodies (mAbs) for internalization and exhibited high specificity and cytotoxicity against A20 murine B‐cell lymphoma. Non‐invasive NIR imaging with a VHH7–fluorophore conjugate showed rapid tumor targeting on both localized and metastatic lymphoma models. Subsequent treatment with the nanobody–drug conjugate efficiently controlled tumor growth and metastasis without obvious systemic toxicity.  相似文献   

14.
Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.  相似文献   

15.
Photoactivatable (caged) fluorophores are widely used in chemistry, materials, and biology. However, the development of such molecules exhibiting photoactivable solid‐state fluorescence is still challenging due to the aggregation‐caused quenching (ACQ) effect of most fluorophores in their aggregate or solid states. In this work, we developed caged salicylaldehyde hydrazone derivatives, which are of aggregation‐induced emission (AIE) characteristics upon light irradiation, as efficient photoactivatable solid‐state fluorophores. These compounds displayed multiple‐color emissions and ratiometric (photochromic) fluorescence switches upon wavelength‐selective photoactivation, and were successfully applied for photopatterning and photoactivatable cell imaging in a multiple‐color and stepwise manner.  相似文献   

16.
Much of the physiology of cells is controlled by the spatial organization of the plasma membrane and the glycosylation patterns of its components, however, studying the distribution, size, and composition of these components remains challenging. A bioorthogonal chemical reporter strategy was used for the efficient and specific labeling of membrane‐associated glycoconjugates with modified monosaccharide precursors and organic fluorophores. Super‐resolution fluorescence imaging was used to visualize plasma membrane glycans with single‐molecule sensitivity. Our results demonstrate a homogeneous distribution of N‐acetylmannosamine (ManNAc)‐, N‐acetylgalactosamine (GalNAc)‐, and O‐linked N‐acetylglucosamine (O‐GlcNAc)‐modified plasma membrane proteins in different cell lines with densities of several million glycans on each cell surface.  相似文献   

17.
Intrinsically disordered proteins, such as tau protein, adopt a variety of conformations in solution, complicating solution‐phase structural studies. We employed an anti‐Brownian electrokinetic (ABEL) trap to prolong measurements of single tau proteins in solution. Once trapped, we recorded the fluorescence anisotropy to investigate the diversity of conformations sampled by the single molecules. A distribution of anisotropy values obtained from trapped tau protein is conspicuously bimodal while those obtained by trapping a globular protein or individual fluorophores are not. Time‐resolved fluorescence anisotropy measurements were used to provide an explanation of the bimodal distribution as originating from a shift in the compaction of the two different families of conformations.  相似文献   

18.
Integration of imaging data across different molecular target types can provide in‐depth insight into cell physiology and pathology, but remains challenging owing to poor compatibility between target‐type‐specific labeling methods. We show that cross‐platform imaging analysis can be readily achieved through DNA encoding of molecular targets, which translates the molecular identity of various target types into a uniform in situ array of ssDNA tags for subsequent labeling with complementary imaging probes. The concept was demonstrated through multiplexed imaging of mRNAs and their corresponding proteins with multicolor quantum dots. The results reveal heterogeneity of cell transfection with siRNA and outline disparity in RNA interference (RNAi) kinetics at the level of both the mRNA and the encoded protein.  相似文献   

19.
The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. A new strategy is based on the incorporation of targeting moieties into the non‐delocalized structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals in a model system, two families of bifunctional molecules that target bone without requiring a traditional bisphosphonate are synthesized. With peak fluorescence emissions at approximately 700 or 800 nm, these molecules can be used for fluorescence‐assisted resection and exploration (FLARE) dual‐channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near‐infrared fluorophores remain stable in bone for over five weeks, and histological analysis confirms their incorporation into the bone matrix. Taken together, a new strategy for creating ultra‐compact, targeted near‐infrared fluorophores for various bioimaging applications is described.  相似文献   

20.
Photoactivatable fluorophores are essential tools for studying the dynamic molecular interactions within important biological systems with high spatiotemporal resolution. However, currently developed photoactivatable fluorophores based on conventional dyes have several limitations including reduced photoactivation efficiency, cytotoxicity, large molecular size, and complicated organic synthesis. To overcome these challenges, we herein report a class of photoactivatable fluorescent N‐hydroxyoxindoles formed through the intramolecular photocyclization of substituted o‐nitrophenyl ethanol (ONPE). These oxindole fluorophores afford excellent photoactivation efficiency with ultra‐high fluorescence enhancement (up to 800‐fold) and are small in size. Furthermore, the oxindole derivatives show exceptional biocompatibility by generating water as the only photolytic side product. Moreover, structure–activity relationship analysis clearly revealed the strong correlation between the fluorescent properties and the substituent groups, which can serve as a guideline for the further development of ONPE‐based fluorescent probes with desired photophysical and biological properties. As a proof‐of‐concept, we demonstrated the capability of a new substituted ONPE that has an uncaging wavelength of 365–405 nm and an excitation/emission at 515 and 620 nm, for the selective imaging of a cancer cell line (Hela cells) and a human neural stem cell line (hNSCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号