首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we report quantitative product state distributions for the photolysis of H2CO --> H + HCO in the triplet threshold region, specifically for several rotational states in the 2(2)4(3) and 2(3)4(1) H2CO vibrational states that lie in this region. We have combined the strengths of two complementary techniques, laser-induced fluorescence for fine resolution and H atom Rydberg tagging for the overall distribution, to quantify the upsilon, N, and Ka distributions of the HCO photofragment formed via the singlet and triplet dissociation mechanisms. Both techniques are in quantitative agreement where they overlap and provide calibration or benchmarks that permit extension of the results beyond that possible by each technique on its own. In general agreement with previous studies, broad N and Ka distributions are attributed to reaction on the S0 surface, while narrower distributions are associated with reaction on T1. The broad N and Ka distributions are modeled well by phase space theory. The narrower N and Ka distributions are in good agreement with previous quasi-classical trajectory calculations on the T1 surface. The two techniques are combined to provide quantitative vibrational populations for each initial H2CO vibrational state. For dissociation via the 2(3)4(1) state, the average product vibrational energy (15% of E(avail)) was found to be about half of the rotational energy (30% of E(avail)), independent of the initial H2CO rotational state, irrespective of the singlet or triplet mechanism. For dissociation via the 2(2)4(3) state, the rotational excitation remained about 30% of E(avail), but the vibrational excitation was reduced.  相似文献   

2.
Cross sections for the excitation of the triplet state of H2 from different vibrational levels of the ground electronic state have been calculated by using the Gryzinski approximation. The results for the ground vibrational level are in satisfactory agreement with the corresponding values obtained by the quantum mechanical close coupling method. The calculated cross sections have been used to generate rate coefficients for the excitation of the triplet states by using a self-consistent electron energy distribution function, obtained by numerical integration of the Boltzmann equation. The results show a strong increase of the different rate coefficients with increasing the vibrational quantum number.  相似文献   

3.
The absolute velocity-dependent alignment and orientation for S(1D2) atoms from the photodissociation of OCS at 193 nm were measured using the dc slice imaging method. Three main peaks ascribed to specific groups of high rotational levels of CO in the vibrational ground state were found, with rotationally resolved rings in a fourth slow region ascribed to weak signals associated with excited vibrational states of CO. The observed speed-dependent beta and polarization parameters support the interpretation that there are two main dissociation processes: a simultaneous two-surface (A' and A") excitation and the initial single-surface (A') excitation followed by the nonadiabatic crossing to ground state. At 193 nm photodissociation, the nonadiabatic dissociation process is strongly enhanced relative to longer wavelengths. The angle- and speed-dependent S(1D2) density matrix can be constructed including the higher order (K = 3,4) contributions for the circularly polarized dissociation light. This was explicitly done for selected energies and angles. It was found in one case that the density matrix is sensitively affected by the rank 4 terms, suggesting that the higher order contributions should not be overlooked for an accurate picture of the dissociation dynamics in this system.  相似文献   

4.
The photophysical parameters controlling the cleavage process of 2-hydroxy-2,2-dimethylacetophenone (HDMA) were investigated in detail. Time-resolved picosecond absorption experiments show that the formation of the triplet state occurs within 20 ps after excitation and decays within hundreds of picoseconds depending on the solvent polarity. Molecular modeling reveals that three stable conformations exist in the ground state, the most stable one exhibiting an intramolecular hydrogen bond that modifies the electronic properties of the molecule. This explains quite well the steady-state absorption properties. The conformation of the most stable triplet state is twisted by 180 degrees with respect to the ground state. Computation of the potential energy surface along the molecular coordinate for the dissociation reaction evidences an electronic state crossing yielding a final sigmasigma* state, in perfect agreement with the state correlation diagram. Optimization of the transition state allows the calculation of the activation energy and the use of the transition-state theory leads to an estimate of 100 ps for the cleavage process in the gas phase. Single-point energy calculations using a solvent model predict an increase of the dissociation rate constant with the increase of the solvent polarity, in good agreement with the value deduced from kinetic measurements.  相似文献   

5.
The electronic structure of spiro[4.4]nonatetraene 1 as well as that of its radical anion and cation were studied by different spectroscopies. The electron‐energy‐loss spectrum in the gas phase revealed the lowest triplet state at 2.98 eV and a group of three overlapping triplet states in the 4.5 – 5.0 eV range, as well as a number of valence and Rydberg singlet excited states. Electron‐impact excitation functions of pure vibrational and triplet states identified various states of the negative ion, in particular the ground state with an attachment energy of 0.8 eV, an excited state corresponding to a temporary electron attachment to the 2b1 MO at an attachment energy of 2.7 eV, and a core excited state at 4.0 eV. Electronic‐absorption spectroscopy in cryogenic matrices revealed several states of the positive ion, in particular a richly structured first band at 1.27 eV, and the first electronic transition of the radical anion. Vibrations of the ground state of the cation were probed by IR spectroscopy in a cryogenic matrix. The results are discussed on the basis of density‐functional and CASSCF/CASPT2 quantum‐chemical calculations. In their various forms, the calculations successfully rationalized the triplet and the singlet (valence and Rydberg) excitation energies of the neutral molecule, the excitation energies of the radical cation, its IR spectrum, the vibrations excited in the first electronic absorption band, and the energies of the ground and the first excited states of the anion. The difference of the anion excitation energies in the gas and condensed phases was rationalized by a calculation of the Jahn‐Teller distortion of the anion ground state. Contrary to expectations based on a single‐configuration model for the electronic states of 1 , it is found that the gap between the first two excited states is different in the singlet and the triplet manifold. This finding can be traced to the different importance of configuration interaction in the two multiplicity manifolds.  相似文献   

6.
A combined experimental and trajectory study of vibrationally state-selected NO2+ collisions with Ne, Ar, Kr, and Xe is presented. Ne, Ar, and Kr are similar in that only dissociation to the excited singlet oxygen channel is observed; however, the appearance energies vary by approximately 4 eV between the three rare gases, and the variation is nonmonotonic in rare gas mass. Xe behaves quite differently, allowing efficient access to the ground triplet state dissociation channel. For all four rare gases there are strong effects of NO2+ vibrational excitation that extend over the entire collision energy range, implying that vibration influences the efficiency of collision to internal energy conversion. Bending excitation is more efficient than stretching; however, bending angular momentum partially counters the enhancement. Direct dynamics trajectories for NO2+ + Kr reproduce both the collision energy and vibrational state effects observed experimentally and reveal that intracomplex charge transfer is critical for the efficient energy transfer needed to drive dissociation. The strong vibrational effects can be rationalized in terms of bending, and to a lesser extent, stretching distortion enhancing transition to the Kr+ -NO2 charge state.  相似文献   

7.
Abstract— Chemiluminescence in the visible region during liquid-phase hydrocarbon oxidation is excited by peroxy radical disproportionation; a carbonyl compound, P, in the triplet state is the emitter. Several types of energy transfer from P to acceptors are considered. These provide valuable information (lifetimes, rate constants, emission yields) relevant to triplet state molecules. The excitation yields are estimated making use of this information, the absolute chemiluminescence intensities and the reaction rates. Electronic excitation of P, vibrational excitation of ground state P and reverse decomposition of an intermediate complex into initial peroxy radicals are considered as competing processes strongly dependent on transformation of chemical energy into vibrations.  相似文献   

8.
The reactions of laser‐ablated beryllium atoms with dinitrogen and carbon monoxide mixtures form the end‐on bonded NNBeCO and side‐on bonded (η2‐N2)BeCO isomers in solid argon, which are predicted by quantum chemical calculations to be almost isoenergetic. The end‐on bonded complex has a triplet ground state while the side‐on bonded isomer has a singlet electronic ground state. The complexes rearrange to the energetically lowest lying NBeNCO isomer upon visible light excitation, which is characterized to be an isocyanate complex of a nitrene derivative with a triplet electronic ground state. A bonding analysis using a charge‐ and energy decomposition procedure reveals that the electronic reference state of Be in the NNBeCO isomers has an 2s02p2 excited configuration and that the metal‐ligand bonds can be described in terms of N2→Be←CO σ donation and concomitant N2←Be→CO π backdonation. The results demonstrate that the activation of N2 with the N?N bond being completely cleaved can be achieved via coupling with carbon monoxide mediated by a main group atom.  相似文献   

9.
Femtosecond nuclear dynamics of mass-selected neutral Ag2 and Ag2O2 clusters are investigated with the 'negative ion-to neutral-to positive ion'(NeNePo) technique. For the bare silver dimer, wave packet dynamics occurring in the neutral electronic ground state and in the first excited triplet state are observed after photodetachment from the anion with 3.05 eV photon energy. While the dynamics in the ground state lead to an oscillatory structure in the NeNePo-pump-probe spectra with a vibrational constant of 185 cm-1, the dynamics in the triplet state are assigned to a bound-free transition leading to dissociation. Photodetachment from the Ag2O2- complex results in the desorption of O2. The experimental data clearly show the influence of the desorbing oxygen ligand on the nuclear dynamics of the silver dimer inducing a red shift in the vibrational frequency and an intensity enhancement of the oscillatory signal.  相似文献   

10.
A velocity imaging technique combined with (2+1) resonance‐enhanced multiphoton ionization (REMPI) is used to detect the primary Br(2P3/2) fragment in the photodissociation of o‐, m‐, and p‐dibromobenzene at 266 nm. The obtained translational energy distributions suggest that the Br fragments are produced via two dissociation channels. For o‐ and m‐dibromobenzene, the slow channel that yields an anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (π,π*) state followed by predissociation along a repulsive triplet (n,σ*) state localized on the C? Br bond. The fast channel that gives rise to an anisotropy parameter of 0.53–0.73 is attributed to a bound triplet state with smaller dissociation barrier. For p‐dibromobenzene, the dissociation rates are reversed, because the barrier for the bound triplet state becomes higher than the singlet–triplet crossing energy. The fractions of translational energy release are determined to be 6–8 and 29–40 % for the slow and fast channels, respectively; the quantum yields are 0.2 and 0.8, and are insensitive to the position of the substituent. The Br fragmentation from bromobenzene and bromofluorobenzenes at the same photolyzing wavelength is also compared to understand the effect of the number of halogen atoms on the phenyl ring.  相似文献   

11.
The anharmonic infrared emission spectrum following an optical excitation has been calculated for a variety of polycyclic aromatic hydrocarbon molecules in their ground singlet electronic state or in their triplet state. The computational protocol relies on second-order perturbation theory and involves a quartic vibrational Hamiltonian, the vibrational quantum numbers being sampled according to a Monte Carlo procedure. In the case of neutral naphthalene, the IR spectrum obtained in the (ground) singlet state differs significantly from the spectrum in the triplet state, especially for out-of-plane CH bending modes. Although not as prominent, spectral differences in larger molecules are still observable.  相似文献   

12.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

13.
The photodissociation dynamics of acetaldehyde in the radical channel CH3+HCO has been reinvestigated using time-sliced velocity map imaging technique in the photolysis wavelength range of 275-321 nm. The CH3 fragments have been probed via (2+1) resonance-enhanced multiphoton ionization. Images are measured for CH3 formed in the ground and excited states (v2=0 and 1) of the umbrella vibrational mode. For acetaldehyde dissociation on T1 state after intersystem crossing from S1 state, the products are formed with high translational energy release and low internal excitation. The rotational and vibrational energy of both fragments increases with increasing photodissociation energy. The triplet barrier height is estimated at 3.8814-0.006 eV above the ground state of acetaldehyde.  相似文献   

14.
In the present Letter, state dependent dissociation rate coefficients in diatomic gases with non-equilibrium vibrational and electronic excitation and chemical reactions are studied. A widely used Treanor–Marrone model is generalized to take into account state-to-state vibrational and electronic distributions. The influence of electronic excitation on the rate of dissociation from various electronic states of CO molecules is estimated.  相似文献   

15.
Picosecond and nanosecond time-resolved resonance Raman spectroscopy combined with density functional theory calculations have been performed to characterize the structure, dynamics, and hydrogen-bonding effects on the triplet state of the phototrigger model compound p-methoxyacetophenone (MAP) in cyclohexane, MeCN, and 50% H2O/50% MeCN (v:v) mixed solvent. Analogous work has also been done to study the corresponding ground state properties. The ground and triplet states of MAP were both found to be associated strongly with the water solvent molecules in the 50% H2O/50% MeCN solvent system. A hydrogen-bond complex model involving one or two water molecules bonded with the oxygen atoms of the MAP carbonyl and methoxy moieties has been employed to explore the hydrogen-bond interactions and their influence on the geometric and electronic properties for the ground and triplet states of MAP. Among the various hydrogen-bond configurations examined, the carbonyl hydrogen-bond configuration involving one water molecule was calculated to lead to the most stable hydrogen-bond complex for both the ground and the triplet states with the strength of the hydrogen-bond interaction being stronger in the triplet state than the ground state. The increased carbonyl located hydrogen-bond strength in the triplet state results in substantial modification of both the electronic and the structural conformation so that the triplet of the hydrogen-bond complex can be considered as a distinct species from the free MAP triplet state. This provides a framework to interpret the differences observed in the TR3 spectral and triplet lifetime obtained in the neat MeCN solvent (attributed to the free MAP triplet state) and the 50% H2O/50% MeCN solvent (due to the triplet of the hydrogen-bond complex). Temporal evolution at early picosecond times indicates rapid ISC conversion, and subsequent relaxation of the excess energy of the initially formed energetic triplets occurs for both the free MAP and the hydrogen-bond complex. The triplet of the carbonyl hydrogen-bond complex appears to be generated directly from the corresponding ground state complex and it does not dissociate back to the free triplet state within the triplet state lifetime. We briefly discuss the influence of the carbonyl hydrogen-bond effect on the pi pi* triplet reactivity for MAP and closely related compounds.  相似文献   

16.
Jakúbek V  Lees AJ 《Inorganic chemistry》2000,39(25):5779-5786
The photochemically induced arene dissociation reaction of the widely used cationic photoinitiator complex [CpFe-(eta 6-isopropylbenzene)]PF6 has quantitatively been investigated in several different solvents at 293 K as a function of excitation wavelength at 355, 458, 488, 514, 633, and 683 nm. The complex was excited into the lowest-lying singlet ligand field manifold (355-514 nm) and directly into the corresponding lowest-lying triplet ligand field state (633, 683 nm). Absolute photochemical quantum efficiency (phi cr) results reveal that the system exhibits a strong excitation wavelength dependence in each investigated solvent and that the reaction is extremely efficient in the UV and visible regions. The wavelength dependence also reveals that the photochemistry does not occur solely from the lowest-lying ligand field triplet excited state. New insights in terms of both photophysical and mechanistic aspects of this system are obtained from the quantitative photochemical results.  相似文献   

17.
In this theoretical study vibrational ladder climbing in transition metal carbonyl complexes, as a possible means to initialize chemical ground state reactions, and the resulting vibrational population distribution using chirped mid-infrared femtosecond laser pulses is investigated. Our model system is MnBr(CO)(5), a strong IR-absorber within an experimentally easily accessible wavelength region. Special emphasis is put on the perturbation due to additional vibrational modes, especially on one, which allows dissociation at low energies. The related potential energy surface for the three representative modes is calculated, whereon quantum dynamics calculations, including the laser-molecule interaction, are performed. No significant coupling could be detected, neither in the bound, nor in the dissociative region. Contrarily, we found a dynamical barrier even for energies high above the dissociation limit. Different vibrational population distributions after the laser excitation of the CO stretching mode could be generated in dependence of the chirp parameters. Based on these findings we simulated the laser excitation corresponding to an experiment by M. Joffre et al., Proc. Natl. Acad. Ssi. U. S. A., 2004, 101(36), 13216-13220, where coherent vibrational ladder climbing in carboxyhemoglobin was demonstrated and we could offer an explanation for an open question, concerning the interpretation of the spectroscopic data.  相似文献   

18.
在230nm激光激发下,氧硫化碳(OCS)分子迅速解离生成振动基态但高转动激发的CO(X~1∑_g~+,v=0,J=42-69)碎片,并通过共振增强多光子电离技术实现其离子化。通过检测处于J=56-69转动激发态CO碎片的离子速度聚焦影像,我们获得了各转动态CO碎片的速度分布和空间角度分布,其中包含了S(1D)+CO的单重态和S(~3P_J)+CO三重态解离通道的贡献。不同的转动态CO碎片对应三重态产物通道的量子产率略有不同,经加权平均我们得到230 nm附近光解OCS分子中S(3P)解离通道的量子产率为4.16%。结合高精度量化计算的OCS分子势能面和吸收截面的信息,我们获得了OCS光解的三重态解离机理,即基态OCS(X~1A')分子吸收一个光子激发到弯曲的A~1A'态之后,通过内转换跃迁回弯曲构型的基电子态,随后在C-S键断裂过程中与2~3A"(c~3A")态强烈耦合并沿后者势能面绝热解离。  相似文献   

19.
The decomposition of 1,2‐dioxetanone into a CO2 molecule and into an excited state formaldehyde molecule was studied in condensed phase, using a density functional theory approach. Singlet and triplet ground and excited states were all included in the calculations. The calculations revealed a novel mechanism for the chemiluminescence of this compound. The triplet excitation can be explained by two intersystem crossings (ISCs) with the ground state, while the singlet excitation can be accounted by an ISC with the triplet state. The experimentally verified small excitation yield can then be explained by the presence of an energy barrier present in the potential energy surface of the triplet excited state, which will govern both triplet and singlet excitation. It was also found that the triplet ground state interacts with both the triplet excited and singlet ground states. A MPWB1K/mPWKCIS approach provided results in agreement with the existent literature. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
We report on a novel ultrafast two-dimensional infrared laser experiment that correlates vibrational bands of reactant and product of a photoreaction. The possibilities of this technique are demonstrated for the metal-to-ligand charge transfer (MLCT) in [Re(CO)3Cl(dmbpy)] (dmbpy = 4,4'-dimethyl-2,2'bipyridine) where we correlated the CO vibrational modes of the ground state and the MLCT state. A distinct vibrational mode is excited in the electronic ground state by an infrared laser pulse. This vibrational label survives the subsequent electronic excitation and can be followed in the excited electronic state. It is shown that the order of the vibrational energy levels is not preserved when exciting the molecule as was commonly assumed in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号