首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the discovery of a new bioorthogonal click‐and‐release reaction involving iminosydnones and strained alkynes. This transformation leads to two products resulting from the ligation and fragmentation of iminosydnones under physiological conditions. Optimized iminosydnones were successfully used to design innovative cleavable linkers for protein modification, thus opening up new areas in the fields of drug release and target‐fishing applications. This click‐and‐release technology offers the possibility of exchanging tags on proteins for functionalized cyclooctynes under mild and bioorthogonal conditions.  相似文献   

2.
3.
Bioorthogonal reactions are widely used for the chemical modification of biomolecules. The application of vinylboronic acids (VBAs) as non‐strained, synthetically accessible and water‐soluble reaction partners in a bioorthogonal inverse electron‐demand Diels–Alder (iEDDA) reaction with 3,6‐dipyridyl‐s‐tetrazines is described. Depending on the substituents, VBA derivatives give second‐order rate constants up to 27 m −1 s−1 in aqueous environments at room temperature, which is suitable for biological labeling applications. The VBAs are shown to be biocompatible, non‐toxic, and highly stable in aqueous media and cell lysate. Furthermore, VBAs can be used orthogonally to the strain‐promoted alkyne–azide cycloaddition for protein modification, making them attractive complements to the bioorthogonal molecular toolbox.  相似文献   

4.
5.
6.
Phage display is a powerful approach for evolving proteins and peptides with new functions, but the properties of the molecules that can be evolved are limited by the chemical diversity encoded. Herein, we report a system for incorporating non‐canonical amino acids (ncAAs) into proteins displayed on phage using the pyrrolysyl‐tRNA synthetase/tRNA pair. We improve the efficiency of ncAA incorporation using an evolved orthogonal ribosome (riboQ1), and encode a cyclopropene‐containing ncAA (CypK) at diverse sites on a displayed single‐chain antibody variable fragment (ScFv), in response to amber and quadruplet codons. CypK and an alkyne‐containing ncAA are incorporated at distinct sites, enabling the double labeling of ScFv with distinct probes, through mutually orthogonal reactions, in a one‐pot procedure. These advances expand the number of functionalities that can be encoded on phage‐displayed proteins and provide a foundation to further expand the scope of phage display applications.  相似文献   

7.
8.
A bioorthogonal ligation and cleavage method via reactions of chloroquinoxalines (CQ) and ortho-dithiophenols (DT) is presented. Double nucleophilic substitutions of ortho-dithiophenols to chloroquinoxalines provide conjugates containing tetracyclic benzo[5,6][1,4]dithiino[2,3-b]quinoxaline with strong built-in fluorescence together with release of the other functional molecules. Three cleavable linkers were designed and successfully used in release of the molecules containing biotin from the protein conjugates. The CQ-DT bioorthogonal reactions can be applied for the bioorthogonal ligations, bioorthogonal cleavages, and trans-tagging of proteins, and show advantages of readily accessible unnatural orthogonal groups, appealing reaction kinetics (k2≈1.3 m −1 s−1), excellent biocompatibility of orthogonal groups, and high stability of conjugates. This complements previous bioorthogonal reactions and is a new route for protein-fishing applications and in-gel fluorescence analysis.  相似文献   

9.
《化学:亚洲杂志》2018,13(14):1791-1796
The development of highly efficient bioorthogonal reactions is of paramount importance for the research fields of biomaterials and chemical biology. We found that the o,o′‐difluorinated aromatic azide was able to react with triphenylphosphine to produce water‐stable phosphanimine. To further improve the efficiency of this kind of nonhydrolysis Staudinger reaction, a tetrafluorinated aromatic azide was employed to develop a faster nonhydrolysis Staudinger reaction with a rate of up to 51 m −1 s−1, as revealed by high‐performance liquid chromatography (HPLC) analysis and fluorescence kinetics. As a proof‐of‐concept study, the highly efficient Staudinger reaction was successfully used for chemoselective fluorescence labeling of proteins and nucleic acids (DNA and RNA) as well as for protein polyethyleneglycol (PEG)ylation. We believe that this bioorthogonal reaction can provide a broadly useful tool for various bioconjugations.  相似文献   

10.
11.
The condensation reaction between 6-hydroxy-2-cyanobenzothiazole (CBT) and cysteine has been shown for various applications such as site-specific protein labelling and in vivo cancer imaging. This report further expands the substrate scope of this reaction by varying the substituents on aromatic nitriles and amino thiols and testing their reactivity and ability to form nanoparticles for cell imaging. The structure–activity relationship study leads to the identification of the minimum structural requirement for the macrocyclization and assembly process in forming nanoparticles. One of the scaffolds made of 2-pyrimidinecarbonitrile and cysteine joined by a benzyl linker was applied to design fluorescent probes for imaging caspase-3/7 and β-galactosidase activity in live cells. These results demonstrate the generality of this system for imaging hydrolytic enzymes.  相似文献   

12.
Homogeneous antibody–drug conjugates (ADCs), generated by site‐specific toxin linkage, show improved therapeutic indices with respect to traditional ADCs. However, current methods to produce site‐specific conjugates suffer from low protein expression, slow reaction kinetics, and low yields, or are limited to particular conjugation sites. Here we describe high yielding expression systems that efficiently incorporate a cyclopropene derivative of lysine (CypK) into antibodies through genetic‐code expansion. We express trastuzumab bearing CypK and conjugate tetrazine derivatives to the antibody. We show that the dihydropyridazine linkage resulting from the conjugation reaction is stable in serum, and generate an ADC bearing monomethyl auristatin E that selectively kills cells expressing a high level of HER2. Our results demonstrate that CypK is a minimal bioorthogonal handle for the rapid production of stable therapeutic protein conjugates.  相似文献   

13.
Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell‐surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms. Herein, we report the first application of this glycoproteomic platform to human tissues cultured ex vivo. Both normal and cancerous prostate tissues were sliced and cultured in the presence of the azide‐functionalized sialic acid biosynthetic precursor Ac4ManNAz. The compound was metabolized to the azidosialic acid and incorporated into cell surface and secreted sialoglycoproteins. Chemical biotinylation followed by enrichment and mass spectrometry led to the identification of glycoproteins that were found at elevated levels or uniquely in cancerous prostate tissue. This work therefore extends the use of bioorthogonal labeling strategies to problems of clinical relevance.  相似文献   

14.
15.
16.
The pre-targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions—the condensation reaction of aromatic nitriles and aminothiols and the inverse-electron demand Diels–Alder reaction between tetrazine and trans-cyclooctene (TCO)—to develop a novel strategy for pre-targeted imaging of the activity of proteases. The substrate probe ( TCO-C-SNAT4 ) can be selectively activated by an enzyme target (e.g. caspase-3/7), which triggers macrocyclization and subsequent in situ self-assembly into nanoaggregates retained at the target site. The tetrazine-imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging in vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO-C-SNAT4 can be repeatedly injected to generate and accumulate more TCO-nanoaggregates for click labeling.  相似文献   

17.
18.
19.
20.
Recent advances in bioorthogonal catalysis are increasing the capacity of researchers to manipulate the fate of molecules in complex biological systems. A bioorthogonal uncaging strategy is presented, which is triggered by heterogeneous gold catalysis and facilitates the activation of a structurally diverse range of therapeutics in cancer cell culture. Furthermore, this solid‐supported catalytic system enabled locally controlled release of a fluorescent dye into the brain of a zebrafish for the first time, offering a novel way to modulate the activity of bioorthogonal reagents in the most fragile and complex organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号