首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A one‐pot procedure for the enantioselective hydroazidation of non‐activated trisubstituted alkenes is described. Hydroboration with monoisopinocampheylborane (IpcBH2) provides dialkylboranes that are in situ selectively converted into monoalkyl‐substituted catecholboranes; these undergo radical azidation upon treatment with benzenesulfonyl azide and a radical initiator. Enantiomerically enriched azides were thus obtained in yields of 59–81 % and enantioselectivities of up to 94:6 e.r. (98:2 e.r. if the intermediate dialkylborane is purified by crystallization). A rapid access to enantiomerically pure (+)‐rodocaine is also described. The use of other arenesulfonyl radical traps enables enantioselective hydroallylation, hydrosulfanylation, and hydrobromination reactions with yields of 71–86 %.  相似文献   

3.
4.
5.
6.
7.
A catalytic, versatile and atom‐economical C−H functionalization process that provides a wide variety of cyclic systems featuring methyl‐substituted quaternary stereocenters is described. The method relies on the use of a cationic IrI–bisphosphine catalyst, which promotes a carboxamide‐assisted activation of an olefinic C(sp2)−H bond followed by exo‐cyclization to a tethered 1,1‐disubstituted alkene. The extension of the method to aromatic and heteroaromatic C−H bonds, as well as developments on an enantioselective variant, are also described.  相似文献   

8.
9.
A palladium‐catalyzed asymmetric intramolecular allylic C−H amination controlled by a chiral phosphoramidite ligand was established for the preparation of various substituted chiral hydropyrimidinones, the precursors of hydropyrimidines, in high yields with high enantioselectivities. In particular, dienyl sodium N ‐sulfonyl amides bearing an arylethene‐1‐sulfonyl group underwent a sequential allylic C−H amination and intramolecular Diels–Alder (IMDA) reaction to produce chiral fused tricyclic tetrahydropyrimidinone frameworks in high yields and with high levels of stereoselectivity. Significantly, this method was used as the key step in an asymmetric synthesis of letermovir.  相似文献   

10.
Highly enantioselective cycloisomerization of N ‐methylanilines, bearing o ‐alkenyl groups, into indolines is established. An iridium catalyst bearing a bidentate chiral diphosphine effectively promotes the intramolecular addition of the C(sp3)−H bond across a carbon–carbon double bond in a highly enantioselective fashion. The reaction gives indolines bearing a quaternary stereogenic carbon center at the 3‐position. The reaction mechanism involves rate‐determining oxidative addition of the N ‐methyl C−H bond, followed by intramolecular carboiridation and subsequent reductive elimination.  相似文献   

11.
A cobalt‐catalyzed dual C(sp3)−H activation strategy has been developed and it provides a novel strategy for the synthesis of bicyclo[4.1.0]heptanes and bicyclo[3.1.0]hexanes. A key to the success of this reaction is the conformation‐induced methylene C(sp3)−H activation of the resulting cobaltabicyclo[4.n.1] intermediate. In addition, the synthesis of bicyclo[3.1.0]hexane from pivalamide, by a triple C(sp3)−H activation, has also been demonstrated.  相似文献   

12.
13.
A novel palladium(II)‐catalyzed cyclization of aniline‐tethered alkynyl cyclohexadienones is reported. This reaction offers an atom‐economical and redox‐neutral access to various cyclohexenone‐fused tetrahydropyrano[3,4‐b ]indoles with high yield and excellent enantioselectivity. Remarkably, this work represents the first example on a transition‐metal‐catalyzed asymmetric intramolecular aminopalladation/1,4 addition sequence.  相似文献   

14.
15.
16.
We report an asymmetric synthesis of enantioenriched gem‐bis(boryl)alkanes in an enantioselective diborylation of 1,1‐disubstituted alkenes catalyzed by Co(acac)2/(R)‐DM‐segphos. A range of activated and unactivated alkenes underwent this asymmetric diborylation in the presence of cyclooctene as a hydrogen acceptor, affording the corresponding gem‐bis(boryl)alkanes with high enantioselectivity. The synthetic utility of these chiral organoboronate compounds was demonstrated through several stereospecific derivatizations and the synthesis of sesquiterpene and sesquiterpenoid natural products.  相似文献   

17.
Bioorthogonal late‐stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. In recent years, transition‐metal‐catalyzed C?H activation has emerged as an increasingly viable tool for peptide modification. Despite major accomplishments, these strategies largely rely on expensive palladium catalysts. We herein report an unprecedented cobalt(III)‐catalyzed peptide C?H activation, which enables the direct C?H functionalization of structurally complex peptides, and sets the stage for a multicatalytic C?H activation/alkene metathesis/hydrogenation strategy for the assembly of novel cyclic peptides.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号