首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The morphologies of films blown from a low‐density polyethylene (LDPE), a linear low‐density polyethylene (LLDPE), and their blend have been characterized and compared using transmission electron microscopy, small‐angle X‐ray scattering, infrared dichroism, and thermal shrinkage techniques. The blending has a significant effect on film morphology. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. However, the LDPE film has the greatest amorphous phase orientation. A mechanism is proposed to account for this unusual phenomenon. Cocrystallization between LDPE and LLDPE occurs in the blowing process of the LDPE and LLDPE blend. The structure–property relationship is also discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 507–518, 2002; DOI 10.1002/polb.10115  相似文献   

2.
纪又新  李良彬 《高分子科学》2017,35(12):1508-1516
A setup of blown film machine combined with in situ synchrotron radiation X-ray diffraction measurements and infrared temperature testing is reported to study the structure evolution of polymers during film blowing. Two homemade auto-lifters are constructed and placed under the blown machine at each end of the beamline platform which move up and down with a speed of 0.05 mm/s bearing the 200 kg weight machine. Therefore, structure development and temperature changes as a function of position on the film bubble can be obtained. The blown film machine is customized to be conveniently installed with precise servo motors and can adjust the processing parameters in a wide range. Meanwhile, the air ring has been redesigned in order to track the structure information of the film bubble immediately after the melt being extruded out from the die exit. Polyethylene (PE) is selected as a model system to verify the feasibility of the apparatus and the in situ experimental techniques. Combining structure information provided by the WAXD and SAXS and the actual temperature obtained from the infrared probe, a full roadmap of structure development during film blowing is constructed and it is helpful to explore the molecular mechanism of structure evolution behind the film blowing processing, which is expected to lead to a better understanding of the physics in polymer processing.  相似文献   

3.
With in situ synchrotron radiation X-ray scattering, the structural alteration of polyethylene-plasticizer film during uniaxial stretching is studied at temperature far below melting point of crystal. By analyzing the evolution rule of structural parameters quantitatively, stretch-induced melting and recrystallization process is validated to be the underlying mechanism of plastic deformation for the system. The physical essence of stretch-induced melting is proved to be phase transition driven by elastic energy which originates from lattice deformation. Conversely, the recrystallization process is proved to be controlled by temperature; furthermore, the growth of lamellae during recrystallization is in perfect accordance with kinetic theory by Lauritzen and Hoffman. This study provides a quantitative understanding to the long-existing melting–recrystallization model from a thermodynamics point of view. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1521–1528  相似文献   

4.
Blown films of different types of polyethylenes, such as branched low‐density polyethylene (LDPE) and linear high‐density polyethylene (HDPE), are well known to tear easily along particular directions: along the film bubble's transverse direction for LDPE and along the machine direction (MD) for HDPE. Depending on the resin characteristics and processing conditions, different structures can form within the film; it is therefore difficult to separate the effects of the crystal structure and orientation on the film tear behavior from the effects of the macromolecular architecture, such as the molecular weight distribution and long‐chain branching. Here we examine LDPE, HDPE, and linear low‐density polyethylene (LLDPE) blown films with similar crystal orientations, as verified by through‐film X‐ray scattering measurements. With these common orientations, LDPE and HDPE films still follow the usual preferred tear directions, whereas LLDPE tears isotropically despite an oriented crystal structure. These differences are attributed to the number densities of the tie molecules, especially along MD, which are considerably greater for linear‐architecture polymers with a substantial fraction of long chains, capable of significant extension in flow. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 413–420, 2005  相似文献   

5.
In accordance with an approach suggested by Kissin (J Polym Sci Polym Phys Ed 1992, 30, 1165), a general form of the Beer–Lambert law was employed to estimate the White–Spruiell biaxial orientation factors of the crystalline phase in various polyethylene blown films. Certain assumptions employed by Kissin are invalid for most polyethylene blown films. Alternate assumptions that are based on sound experimental evidence were employed, and the ensuing theory and equations are presented. This technique incorporates into the Beer–Lambert law all possible orthogonal configurations of the polyethylene orthorhombic unit cell with respect to the axes of a blown film along with IR absorption data at 719 cm−1 and 730 cm−1. Solving the various equations (the Beer–Lambert law at orthogonal polarizations for each band) provided estimates for the mass fractions of all orthogonal configurations of the crystal unit cell with respect to the axes of a blown film. The ultimate biaxial orientation features of the crystalline phase are described as a combination of these orthogonal configurations. The resulting White–Spruiell biaxial orientation factors are in good qualitative agreement with X‐ray diffraction patterns for various low‐ and high‐density polyethylene blown films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 182–193, 2000  相似文献   

6.
A setup of blown film machine combined with in situ synchrotron radiation X-ray diffraction measurements and infrared temperature testing is reported to study the structure evolution of polymers during film blowing.Two homemade auto-lifters are constructed and placed under the blown machine at each end of the beamline platform which move up and down with a speed of 0.05 mm/s bearing the 200 kg weight machine.Therefore,structure development and temperature changes as a function of position on the film bubble can be obtained.The blown film machine is customized to be conveniently installed with precise servo motors and can adjust the processing parameters in a wide range.Meanwhile,the air ring has been redesigned in order to track the structure information of the film bubble immediately after the melt being extruded out from the die exit.Polyethylene (PE) is selected as a model system to verify the feasibility of the apparatus and the in situ experimental techniques.Combining structure information provided by the WAXD and SAXS and the actual temperature obtained from the infrared probe,a full roadmap of structure development during film blowing is constructed and it is helpful to explore the molecular mechanism of structure evolution behind the film blowing processing,which is expected to lead to a better understanding of the physics in polymer processing.  相似文献   

7.
We report structural factors affecting the optical properties of blown polyethylene films. Two types of blown polyethylene films of similar degrees of crystallinity were made from (1) single‐site‐catalyst high‐density polyethylene (HDPE; STAR α) and (2) Ziegler–Natta‐catalyst HDPE (ZN) resins. The STAR α film exhibited high clarity and gloss, whereas the ZN film was turbid. Small‐angle X‐ray scattering (SAXS), small‐angle light scattering (SALS), and optical microscopy gave quantitative and qualitative information regarding structure and orientation in the films. A new approach is described for determining the three‐dimensional lamellar normal orientation from SAXS. Both the clear STAR α and turbid ZN films had similar lamellar crystalline structures and long periods but displayed different degrees of orientation. It is demonstrated that optical haze is related to surface features that seem to be linked to the bulk morphology. The relationship between haze and structural orientation is described. The lamellar orientation is linked to rodlike structures seen in optical microscopy and SALS through a stacked lamellar or cylindrite morphology on a nanometer scale and through a fiberlike morphology on a micrometer scale. The micrometer‐scale, rodlike structures seem directly related to surface roughness in a comparison of index‐matched immersion and surface micrographs. The higher haze and lower gloss of the ZN film was caused by extensive surface roughness not observed in the STAR α film. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2923–2936, 2001  相似文献   

8.
Cross-linked polymers have particular rheological responses during reprocessing, e. g. if the material is recycled, special processing conditions are required. Other virgin polymers can be used as a blending component to enhance rheological properties. Bi-layer film of EVA/LLDPE was produced on a blown film line and cross-linked by high-energy radiation. This film was ‘agglomerated’ then reprocessed in a twin-screw extruder with virgin LLDPE and blown into film. The miscibility of the blend components was then studied using a TA Instruments temperature modulated differential scanning calorimeter (TMDSC). It was found that the cross-linked EVA/LLDPE scrap and the LLDPE have a slight miscibility in the liquid state. A bigger portion of LLDPE was miscible (dissolved) in EVA in low LLDPE blends. A positive deviation in the heat capacity of the LLDPE component compared to the additivity rule indicated melting to be more reversible in the first heating cycle. This initial miscibility was attributed to being induced by high shear during processing. A smaller positive deviation also occurred in the second heating cycle. This was attributed to intrinsic miscibility. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Isothermal ultra‐cooling crystallization tests were conducted on three blown film grade bimodal HDPE resins using an ultrafast scanning calorimeter, the Flash DSC. Isothermal tests were performed to study the regime transition, the thermal nucleation and the spherulitical growth using the Hoffman‐Lauritzen theory in a range between 90 °C and 116 °C. Temperature profile estimations using such data were in good agreement with actual blown film process data. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2425–2431  相似文献   

10.
Heterogeneous deformation in the form of dilatational bands is observed under certain biaxial stress states that closely resembles uniaxial necking in LLDPE blown films. The formation and orientation of dilatational bands is a function of film morphology and stress state. The dilatational bands form, with their lengths aligned with the machine direction (MD) of the film, under equibiaxial stress states and nonequibiaxial stress states when the higher principle stress is coincident with the transverse direction (TD). However, homogeneous deformation is observed if the higher principle stress is coincident with the MD. Similarly, uniaxial specimens show necking when the stress is applied in the TD and affine deformation when the stress is applied in the MD. Neck boundary propagation under uniaxial loading is due primarily to the consumption of undrawn material, while dilatational band boundary propagation under an equibiaxial loading also includes simultaneous continued deformation of the drawn material. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2651–2663, 1999  相似文献   

11.
Block copolymer (BCP) films with long-range lateral ordering and orientation are crucial for many applications. Here, we report a simple, versatile strategy based on a solution casting procedure, to produce millimeter thick film of BCPs with highly oriented nanostructures. Transmission electron microscope (TEM), small angle X-ray scattering (SAXS), and Hansen solubility parameters were used to study the morphology and interactions of the system. A variety of BCP-solvent pairs were investigated. Factors including set-up geometry, BCP characteristics, solvent evaporation, surface tension, and interactions, such as solvent-BCP, solvent-substrate, and BCP-substrate were examined. A mechanism is proposed to describe the observed long-range lateral ordering and orientation in films up to 1 mm in thickness. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1369–1375  相似文献   

12.
A method based on Fourier transform infrared (FTIR) transmission spectra is proposed to measure the crystallinity of isotactic polypropylene (iPP) samples. The method parameters were tuned as compared with wide‐angle X‐ray scattering measurements performed on test samples characterized by different crystallinity values obtained by solidification of thin iPP films under several cooling rates in a homemade device. The FTIR dichroic ratio measurements were adopted to measure crystalline and average Hermans' orientation factors of iPP samples obtained by film casting. The crystalline orientation measurement method was validated as compared with the birefringence measurement. The techniques were successfully used in real time during some film‐casting runs with a suitably modified FTIR system made of a spectrometer equipped with two optical guidelines and an external detector. Real‐time measurements are reported and discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 998–1008, 2003  相似文献   

13.
Shear piezoelectricity has been shown to be linearly proportional to the product of polymer crystallinity and orientation. However, investigations concerning the singular and cumulative effects of these parameters are incomplete since these studies relied exclusively on using orientation to alter crystallinity. In this research, polylactic acid (PLA) samples were fabricated by a dual drawing/annealing process to expand the investigation into the relationship between crystallinity, orientation, and shear piezoelectricity. The results of this study show for the first time that PLA shear piezoelectricity possesses a stronger relationship with the product of crystallinity and orientation than either of these parameters individually. However, this research also shows that processing of PLA for shear piezoelectric applications should focus only on achieving large degrees of orientation, which will inherently lead to increases in crystallinity as well. This approach will optimize PLA's shear sensing capabilities while avoiding certain detrimental effects, specifically embrittlement and a reversal of polymer chain orientation, which can occur during annealing. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1555–1562, 2011  相似文献   

14.
A phenanthrodithiophene (PDT)-difluorobenzoxadiazole (DFBO) copolymer, P-PDT-DFBO , was synthesized and characterized. Replacing a thiadiazole with an oxadiazole ring gives the synthesized polymer a highest occupied molecular orbital (HOMO) about 0.1 V lower, and lowest unoccupied molecular orbital energy levels lower than those of its benzothiadiazole (BT) counterpart, due to the more electron-deficient oxadiazole. Furthermore, since oxadiazole has a larger dipole moment than BT, P-PDT-DFBO exhibits greater aggregation strength than previously reported for P-PDT-DFBT . The low-lying HOMO level of P-PDT-DFBO gave about 0.1 V higher open-circuit voltage (Voc), yielding over 0.9 V in a fabricated solar cell. From grazing incidence wide-angle X-ray diffraction analysis, P-PDT-DFBO formed a favorable face-on orientation in both neat and blended films, indicating that the incorporation of an oxadiazole moiety can enhance Voc without any orientation change in the solid state. However, a P-PDT-DFBO -based cell exhibited significantly lower Jsc and FF, and thus less power conversion efficiency, not >4.43%, due to its lower hole mobility than P-PDT-DFBT . One possible reason for poor performance may be the low crystallinity of P-PDT-DFBO in blended film. This may be caused by its strong aggregation tendency, leading to fast crystallization into a semiamorphous structure or to interference with the construction of long-range ordered structure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2646–2655  相似文献   

15.
The grafting of N‐carbamyl maleamic acid (NCMA) onto linear low‐density polyethylene (LLDPE) was carried out with different concentrations of 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy) hexane (DBPH) as an initiator. The modification process was performed in the molten state with a Brabender mixer. All the materials were characterized with Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and melt rheology. The analysis of the FTIR spectra indicated that the grafting efficiency increased with the concentration of both NCMA and DBPH. The calorimetric experiments showed that the modification process did not noticeably alter the enthalpy of fusion of LLDPE, whereas the melting temperature of the modified polymers was slightly lower than that corresponding to the original LLDPE. The rheological response of the molten polymers, determined under dynamic shear flow at small‐amplitude oscillations, indicated that the modification process induced crosslinking of the chains. Both the dynamic viscosity and elastic modulus of the modified LLDPE increased with the concentration of NCMA and DBPH, showing that larger molecules were generated during the modification process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3950–3958, 2002  相似文献   

16.
A series of linear low‐density polyethylene (LLDPE) nanocomposites containing different types of nanofiller (TiO2, MWCNT, expanded graphite, and boehmite) were prepared by in situ polymerization using a tandem catalyst system composed of {TpMs}NiCl ( 1 ) and Cp2ZrCl2 ( 2 ), and analyzed by differential scanning calorimetry, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). Based on these analyses, the filler content varied from 1.30 to 1.80 wt %. The melting temperatures and degree of crystallinity of the LLDPE nanocomposites were comparable to those of neat LLDPE. The presence of MWCNT as well as boehmite nucleated the LLDPE crystallization, as indicated by the increased crystallization temperature. The DMA results showed that the presence of TiO2, EG, and CAM 9080 in the LLDPE matrix yielded nanocomposites with relatively inferior mechanical properties compared to neat LLDPE, suggesting heterogeneous distribution of these nanofillers into the polymer matrix and/or the formation of nanoparticle aggregates, which was confirmed by TEM. However, substantial improvement in the storage modulus was achieved by increasing the sonication time. The highest storage modulus was obtained using MWCNT (1.30 wt %). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3506–3512  相似文献   

17.
Non‐isothermal ultra‐fast cooling crystallization tests were conducted on three blown film grade bimodal high density polyethylene (HDPE) resins using a fast differential scanning calorimeter, the Flash DSC. Non‐isothermal tests were performed at cooling rates between 50 and 4000°K/s, and the data were analyzed using the modified Avrami model by Jeziorny (Polymer, 1978 , 19, 1142). Non‐isothermal data were used to propose a new method named crystallization–time–temperature–superposition, and the two activation energies were obtained for each of the resins. This is very useful for obtaining theoretical crystallization kinetics data at different cooling rates, allowing its use in ultra‐fast cooling polymer processes such as blown film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1822–1827  相似文献   

18.
The electronic performance of conjugated polymers depends on the microstructure of the polymer films. A percolated network morphology with high crystallinity, ordered intermolecular packing and long‐range order is beneficial for charge transport. In recent reports, some conjugated polymers have been shown to exhibit liquid crystallinity. The appearance of liquid crystalline ordering provides a new solution to solve the difficulties in microstructure manipulation. In this review, we summarize how liquid crystallinity can assist molecular arrangement and guide long‐range orientation during film processing, leading to high charge mobility. We expect that this article could draw more attention to the liquid crystallinity of conjugated polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1572–1591  相似文献   

19.
Liquid crystals are widely employed as stimuli‐responsive materials. Liquid crystallinity can be retained in polymeric form. Photoinduced mechanical effects in liquid crystalline polymer networks and elastomers have been a topic of considerable recent research. This review details the historical underpinnings and recent advances in the synthesis and the corresponding photomechanical response of these materials. In nearly all cases, the conversion of light into mechanical work has employed azobenzene as either a guest additive or covalently attached to the network. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 695–705  相似文献   

20.
Three stages of elastic behavior were observed during cyclic deformations for poly(ether‐b‐amide) (PEBA) segmented copolymers based on crystalline hard segments of polyamide 12 (PA12) and amorphous soft segments of poly(tetramethylene oxide) (PTMO). The underlying microstructural evolution was characterized by a combination of in situ Fourier transform infrared spectroscopy (FTIR), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS) technologies. The γ–α″ phase transition of crystalline PA12 occurred upon stretching, and the orientation of the α″ phase was less reversible under larger strains. PTMO chain orientation cannot be restored to the initial state, contributing to plastic deformation. Driven by the entropy effect, the strain‐induced crystallization of PTMO can fuse during sample retarding, exerting little influence on the residual strain. For PEBA with a shore D hardness of 35 D, the long period (L) can be restored to the initial L after the sample was unloaded until system fibrillation. The tie molecules between adjacent oriented lamellae can be by drawn out high stress in a PEBA material with a shore D hardness of 40 D, and the relaxation led to a second long period. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 855–864  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号