共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Senlian Hong Pankaj Sahai‐Hernandez Digantkumar Gopaldas Chapla Kelley W. Moremen David Traver Peng Wu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(40):14465-14471
Dynamic turnover of cell‐surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two‐step labeling sequence is required, which suffers from the tissue‐penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single‐step fluorescent glycan labeling strategy by using fluorophore‐tagged analogues of the nucleotide sugars. Injecting fluorophore‐tagged sialic acid and fucose into the yolk of zebrafish embryos at the one‐cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis. 相似文献
13.
14.
15.
16.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(5):1244-1248
Nucleic acids and polypeptides are at the heart of life. It is interesting to ask whether the monomers of these biopolymers possess intrinsic reactivity that favors oligomerization in the absence of enzymes. We have recently observed that covalently linked peptido RNA chains form when mixtures of monomers react in salt‐rich condensation buffer. Here, we report the results of a screen of the 20 proteinogenic amino acids and four ribonucleotides. None of the amino acids prevent phosphodiester formation, so all of them are compatible with genetic encoding through RNA chain growth. A reactivity landscape was found, in which peptide formation strongly depends on the structure of the amino acid, but less on the nucleobase. For example, proline gives ribonucleotide‐bound peptides most readily, tyrosine favors pyrophosphate and phosphodiester formation, and histidine gives phosphorimidazolides as dominant products. When proline and aspartic acid were allowed to compete for incorporation, only proline was found at the N‐terminus of peptido chains. The reactivity described here links two fundamental classes of biomolecules through reactions that occur without enzymes, but with amino acid specificity. 相似文献
17.
18.
19.
20.
Sean E. Pidgeon Dr. Marcos M. Pires 《Angewandte Chemie (International ed. in English)》2017,56(30):8839-8843
The surge in drug-resistant bacterial infections threatens to overburden healthcare systems worldwide. Bacterial cell walls are essential to bacteria, thus making them unique targets for the development of antibiotics. We describe a cellular reporter to directly monitor the phenotypic switch in drug-resistant bacteria with temporal resolution. Vancomycin-resistant enterococci (VRE) escape the bactericidal action of vancomycin by chemically modifying their cell-wall precursors. A synthetic cell-wall analogue was developed to hijack the biosynthetic rewiring of drug-resistant cells in response to antibiotics. Our study provides the first in vivo VanX reporter agent that responds to cell-wall alteration in drug-resistant bacteria. Cellular reporters that reveal mechanisms related to antibiotic resistance can potentially have a significant impact on the fundamental understanding of cellular adaption to antibiotics. 相似文献