首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The nanocrystalline cubic Phase of zirconia was found to be thermally stabilized by the addition of 2.56 to 17.65 mol % Y2O3 (5.0 to 30.0 mol % Y, 95.0 to 70.0 mol % Zr cation content). The cubic phase of yttria stabilized zirconia was prepared by thermal decomposition of the hydroxides at 400°C for 1 hr. 2.56 mol % Y2O3‐ZrO2 was stable up to 800°C in an argon atmosphere. The samples with 4.17 to 17.65 mol % Y2O3 were stable to 1200°C and higher. All samples at temperatures between 1450°C to 1700°C were cubic except the sample with 2.56 mol % Y2O3 which was tetragonal. The crystallite sizes observed for the cubic phase ranged from 50 to 150 Å at temperatures below 900°C and varied from 600 to 800 nm between 1450°C and 1700°C. Control of furnace atmosphere is the main factor for obtaining the cubic phase of Y‐SZ at higher temperature. Nanocrystalline cubic Fe‐SZ (Iron Stabilized Zirconia) with crystallite sizes from 70 to 137 Å was also prepared at 400°C. It transformed isothermally at temperatures above 800°C to the tetragonal Fe‐SZ and ultimately to the monoclinic phase at 900°C. The addition of up to 30 mol % Fe(III) thermally stabilized the cubic phase above 800°C in argon. Higher mol % resulted in a separation of Fe2O3. The nanocrystalline cubic Fe‐SZ containing a minimum 20 mol % Fe (III) was found to have the greatest thermal stability. The particle size was a primary factor in determining cubic or tetragonal formation. The oxidation state of Fe in zirconia remained Fe3+. Fe‐SZ lattice parameters and rate of particle growth were observed to decrease with higher iron content. The thermal stability of Fe‐SZ is comparable with that of Ca‐SZ, Mg‐SZ and Mn‐SZ prepared by this method.  相似文献   

5.
6.
Efficient separation of photogenerated electrons and holes, and associated surface reactions, is a crucial aspect of efficient semiconductor photocatalytic systems employed for photocatalytic hydrogen production. A new CoOx/TiO2/Pt photocatalyst produced by template‐assisted atomic layer deposition is reported for photocatalytic hydrogen production on Pt and CoOx dual cocatalysts. Pt nanoclusters acting as electron collectors and active sites for the reduction reaction are deposited on the inner surface of porous TiO2 nanotubes, while CoOx nanoclusters acting as hole collectors and active sites for oxidation reaction are deposited on the outer surface of porous TiO2 nanotubes. A CoOx/TiO2/Pt photocatalyst, comprising ultra‐low concentrations of noble Pt (0.046 wt %) and CoOx (0.019 wt %) deposited simultaneously with one atomic layer deposition cycle, achieves remarkably high photocatalytic efficiency (275.9 μmol h−1), which is nearly five times as high as that of pristine TiO2 nanotubes (56.5 μmol h−1). The highly dispersed Pt and CoOx nanoclusters, porous structure of TiO2 nanotubes with large specific surface area, and the synergetic effect of the spatially separated Pt and CoOx dual cocatalysts contribute to the excellent photocatalytic activity.  相似文献   

7.
8.
9.
Synthesis of low‐dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high‐yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent‐grade common sodium‐containing compounds, including NaCl, NaHCO3, Na2CO3, and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na‐based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal‐free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.  相似文献   

10.
11.
12.
13.
14.
采用阳极氧化法在Fe上原位生长直立有序的Fe2O3纳米管阵列,脉冲电沉积法将蜂窝状CuO组装到Fe2O3NTs上,得到CuO HCs/Fe2O3NTs催化剂.结果表明:Fe2O3NTs呈"火山状"规则生长,蜂窝状CuO均匀分布在Fe2O3NTs表面.修饰后,材料的能隙由原来的2.03 eV窄化为1.84 eV.同时发现该催化剂具有优良的光催化还原性能和电催化还原性能,光电催化还原CO2的主要生成产物为甲醇,甲醇在6 h时含量峰值为3.77 mmol/L.该研究对光电催化还原CO2有一定的指导和借鉴意义.  相似文献   

15.
16.
17.
18.
FeOCl nanosheet arrays were deposited on fluorine‐doped tin oxide glass substrates through a chemical vapor deposition method and further converted to hematite porous nanosheet arrays. A much enhanced photocurrent was obtained for such hematite films, which was three times higher than that of a planar hematite film at 1.23 V versus a reversible hydrogen reference electrode.  相似文献   

19.
20.
采用改性沉积-沉淀法制备了系列低温水煤气变换Au/Fe2O3催化剂,发现经300℃焙烧的样品具有较好的催化活性和稳定性.并运用N2物理吸附、原位X射线粉末衍射(in situ XRD)、程序升温还原(H2-TPR)和X射线光电子能谱(XPS)等技术,探讨焙烧温度对催化剂性能的影响机制,同时对样品的失活原因进行了分析.结果表明,催化剂性能与焙烧温度引起的金和载体氧化铁的相互作用以及载体还原性质的变化密切相关.XPS表征结果说明,尽管反应后在催化剂表面有碳酸盐或类碳酸盐物种生成,但半定量分析表明这些物种的形成不是催化剂失活的主要原因;根据在低温水煤气变换反应过程中Au/Fe2O3催化剂的比表面积明显下降,载体的结晶度也明显提高,推断Au/Fe2O3催化剂载体的结构性质的变化才是其失活的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号