首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The oxidative cyclodehydrogenation (often named the Scholl reaction) is still a powerful synthetic tool to construct even larger polycyclic aromatic hydrocarbons (PAHs) by multiple biaryl bond formations without the necessity of prior installation of reacting functional groups. Scholl‐type reactions are usually very selective although the resulting products bear sometimes some surprises, such as the formation of five‐membered instead of six‐membered rings or the unexpected migration of aryl moieties. There are a few examples, where chlorinated byproducts were found when FeCl3 was used as reagent. To our knowledge, the direct functionalization of PAHs during Scholl‐type cyclization by triflyloxylation has not been observed. Herein we describe the synthesis of functionalized PAHs by the formation of five‐membered rings and a regioselective triflyloxylation in one step. The triflyloxylated PAHs can be used as reactants for further transformation to even larger contorted PAHs.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) that contain both five‐ and seven‐membered rings are rare, and those where these rings are annulated to each other and build azulene units have, to date, mainly been generated in minute amounts on surfaces. Herein, a rational approach to synthesize soluble contorted PAHs containing two embedded azulene units in the bulk is presented. By stepwise detachment of tert‐butyl groups, a series of three azulene embedded PAHs with different degrees of contortion has been made to study the impact of curvature on aromaticity and conjugation. Furthermore, the azulene PAHs showed high fluorescence quantum yields in the NIR regime.  相似文献   

5.
Rapid access to structurally diversified polycyclic aromatic hydrocarbons (PAHs) in a controlled manner is of key significance in materials sciences. Herein, we describe a strategy featuring two distinct electrocatalytic C?H transformations for the synthesis of novel nonplanar PAHs. The combination of rhodaelectrooxidative C?H activation/[2+2+2] alkyne annulation of easily accessible boronic acids with electrocatalytic cyclodehydrogenation provided modular access to diversely substituted PAHs with electricity as a sustainable oxidant. The unique molecular topology as well as the photophysical and electronic properties of the thus obtained PAHs were fully analyzed. The unique power of this metallaelectrocatalysis method was demonstrated by the chemoselective assembly of synthetically useful iodo‐substituted PAHs.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) represent the link between resonance‐stabilized free radicals and carbonaceous nanoparticles generated in incomplete combustion processes and in circumstellar envelopes of carbon rich asymptotic giant branch (AGB) stars. Although these PAHs resemble building blocks of complex carbonaceous nanostructures, their fundamental formation mechanisms have remained elusive. By exploring these reaction mechanisms of the phenyl radical with biphenyl/naphthalene theoretically and experimentally, we provide compelling evidence on a novel phenyl‐addition/dehydrocyclization (PAC) pathway leading to prototype PAHs: triphenylene and fluoranthene. PAC operates efficiently at high temperatures leading through rapid molecular mass growth processes to complex aromatic structures, which are difficult to synthesize by traditional pathways such as hydrogen‐abstraction/acetylene‐addition. The elucidation of the fundamental reactions leading to PAHs is necessary to facilitate an understanding of the origin and evolution of the molecular universe and of carbon in our galaxy.  相似文献   

7.
We report a modular synthetic strategy for accessing heteroatom‐containing polycyclic aromatic hydrocarbons (PAHs). Our approach relies on the controlled generation of transient heterocyclic alkynes and arynes. The strained intermediates undergo in situ trapping with readily accessible oxadiazinones. Four sequential pericyclic reactions occur, namely two Diels–Alder/retro‐Diels–Alder sequences, which can be performed in a stepwise or one‐pot fashion to assemble four new carbon–carbon (C?C) bonds. These studies underscore how the use of heterocyclic strained intermediates can be harnessed for the preparation of new organic materials.  相似文献   

8.
A versatile π‐extension reaction was developed based on the three‐component cross‐coupling of aryl halides, 2‐haloarylcarboxylic acids, and norbornadiene. The transformation is driven by the direction and subsequent decarboxylation of the carboxyl group, while norbornadiene serves as an ortho ‐C−H activator and ethylene synthon via a retro‐Diels–Alder reaction. Comprehensive DFT calculations were performed to account for the catalytic intermediates.  相似文献   

9.
BN-embedded oligomers with different pairs of BN units were synthesized by electrophilic borylation. Up to four pairs of BN units were incorporated in the large polycyclic aromatic hydrocarbons (PAHs). Their geometric, photophysical, electrochemical, and Lewis acidic properties were investigated by X-ray crystallography, optical spectroscopy, and cyclic voltammetry. The B−N bonds show delocalized double-bond characteristics and the conjugation can be extended through the trans-orientated aromatic azaborine units. Calculations reveal the relatively lower aromaticity for the inner azaborine rings in the BN-embedded PAH oligomers. The frontier orbitals of the longer oligomers are delocalized over the inner aromatic rings. Consequently, the inner moieties of the BN-embedded PAH oligomers are more active than the outer parts. This is confirmed by a simple oxidation reaction, which has significant effects on the aromaticity and the intramolecular charge-transfer interactions.  相似文献   

10.
Halogenated buckybowls or bowl‐shaped polycyclic aromatic hydrocarbons (BS‐PAHs) are key building blocks for the “bottom‐up” synthesis of various carbon‐based nanomaterials with outstanding potential in different fields of technology. The current state of the art provides quite a limited number of synthetic pathways to BS‐PAHs; moreover, none of these approaches show high selectivity and tolerance of functional groups. Herein we demonstrate an effective route to BS‐PAHs that includes directed intramolecular aryl–aryl coupling through C−F bond activation. The coupling conditions were found to be completely tolerant toward aromatic C−Br and C−Cl bonds, thus allowing the facile synthesis of rationally halogenated buckybowls with an unprecedented level of selectivity. This finding opens the way to functionalized BS‐PAH systems that cannot be obtained by alternative methods.  相似文献   

11.
The first rational synthesis of a BN‐doped coronene derivative in which the central benzene ring has been replaced by a borazine core is described. This includes six C−C ring‐closure steps that, through intramolecular Friedel–Crafts‐type reactions, allow the stepwise planarization of the hexaarylborazine precursor. UV/Vis absorption, emission, and electrochemical investigations show that the introduction of the central BN core induces a dramatic widening of the HOMO–LUMO gap and an enhancement of the blue‐shifted emissive properties with respect to its all‐carbon congener.  相似文献   

12.
13.
This study presents a new class of conjugated polycyclic molecules that contain seven‐membered rings, detailing their synthesis, crystal structures and semiconductor properties. These molecules have a nearly flat C6‐C7‐C6‐C7‐C6 polycyclic framework with a p‐quinodimethane core. With field‐effect mobilities of up to 0.76 cm2 V−1 s−1 as measured from solution‐processed thin‐film transistors, these molecules are alternatives to the well‐studied pentacene analogues for applications in organic electronic devices.  相似文献   

14.
Dodecaphenyltetracene ( 4 ), the largest perphenylacene yet prepared, was synthesized from known tetraphenylfuran, hexaphenylisobenzofuran, and 1,2,4,5‐tetrabromo‐3,6‐diphenylbenzene in three steps. The X‐ray structure of the deep red, highly luminescent 4 shows it to be a D2‐symmetric molecule with an end‐to‐end twist of 97°. The central acene is encapsulated by the peripheral phenyl substituents, and as a result, the molecule is relatively unreactive and even displays reversible electrochemical oxidation and reduction.  相似文献   

15.
16.
Star‐shaped nanographenes (SNGs) are large monodisperse polycyclic aromatic hydrocarbons that are larger than a nanometer and have shown a lot of promise in a wide range of applications including electronics, energy conversion, and sensing. Herein, we report a new family of giant star‐shaped N‐doped nanographenes with diameters up to 6.5 nm. Furthermore, the high solubility of this SNG family in neutral organic solvents at room temperature allowed a complete structural, optoelectronic, and electrochemical characterisation, which together with charge transport studies illustrate their n‐type semiconducting character.  相似文献   

17.
18.
A new strategy is demonstrated for the synthesis of warped, negatively curved, all‐sp2‐carbon π‐scaffolds. Multifold C?C coupling reactions are used to transform a polyaromatic borinic acid into a saddle‐shaped polyaromatic hydrocarbon ( 2 ) bearing two heptagonal rings. Notably, this Schwarzite substructure is synthesized in only two steps from an unfunctionalized alkene. A highly warped structure of 2 was revealed by X‐ray crystallographic studies and pronounced flexibility of this π‐scaffold was ascertained by experimental and computational studies. Compound 2 exhibits excellent solubility, visible range absorption and fluorescence, and readily undergoes two reversible one‐electron oxidations at mild potentials.  相似文献   

19.
20.
Efficient and rapid access to nanographenes and π‐extended fused heteroaromatics is important in materials science. Herein, we report a palladium‐catalyzed efficient one‐step annulative π‐extension (APEX) reaction of polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics, producing various π‐extended aromatics. In the presence of a cationic Pd complex, triflic acid, silver pivalate, and diiodobiaryls, diverse unfunctionalized PAHs and heteroaromatics were directly transformed into larger PAHs, nanographenes, and π‐extended fused heteroaromatics in a single step. In the reactions that afford [5]helicene substructures, simultaneous dehydrogenative ring closures occur at the fjord regions to form unprecedented larger nanographenes. This successive APEX reaction is notable as it stiches five aryl–aryl bonds by C−H functionalization in a single operation. Moreover, the unique molecular structures, crystal‐packing structures, photophysical properties, and frontier molecular orbitals of the thus‐formed nanographenes were elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号