首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first crystallographically characterizable complex of Sc2+, [Sc(NR2)3] (R=SiMe3), has been obtained by LnA3/M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR2)3 with K in the presence of 2.2.2‐cryptand (crypt) and 18‐crown‐6 (18‐c‐6) and with Cs in the presence of crypt. Dark maroon [K(crypt)]+, [K(18‐c‐6)]+, and [Cs(crypt)]+ salts of the [Sc(NR2)3] anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight‐line EPR spectra arising from the I =7/2 45Sc nucleus. The Sc(NR2)3 reduction differs from Ln(NR2)3 reactions (Ln=Y and lanthanides) in that it occurs under N2 without formation of isolable reduced dinitrogen species. [K(18‐c‐6)][Sc(NR2)3] reacts with CO2 to produce an oxalate complex, {K2(18‐c‐6)3}{[(R2N)3Sc]2(μ‐C2O4κ 1O:κ 1O′′)}, and a CO2 radical anion complex, [(R2N)3Sc(μ‐OCO‐κ 1O:κ 1O′)K(18‐c‐6)]n .  相似文献   

2.
The synthesis of new molecular complexes of U2+ has been pursued to make comparisons in structure, physical properties, and reactivity with the first U2+ complex, [K(2.2.2‐cryptand)][Cp′3U], 1 (Cp′=C5H4SiMe3). Reduction of Cp′′3U [Cp′′=C5H3(SiMe3)2] with KC8 in the presence of 2.2.2‐cryptand or 18‐crown‐6 generates [K(2.2.2‐cryptand)][Cp′′3U], 2‐K(crypt) , or [K(18‐crown‐6)(THF)2][Cp′′3U], 2‐K(18c6) , respectively. The UV/Vis spectra of 2‐K and 1 are similar, and they are much more intense than those of U3+ analogues. Variable temperature magnetic susceptibility data for 1 and 2‐K(crypt) reveal lower room temperature χMT values relative to the experimental values for the 5f3 U3+ precursors. Stability studies monitored by UV/Vis spectroscopy show that 2‐K(crypt) and 2‐K(18c6) have t1/2 values of 20 and 15 h at room temperature, respectively, vs. 1.5 h for 1 . Complex 2‐K(18c6) reacts with H2 or PhSiH3 to form the uranium hydride, [K(18‐crown‐6)(THF)2][Cp′′3UH], 3 . Complexes 1 and 2‐K(18c6) both reduce cyclooctatetraene to form uranocene, (C8H8)2U, as well as the U3+ byproducts [K(2.2.2‐cryptand)][Cp′4U], 4 , and Cp′′3U, respectively.  相似文献   

3.
Hexaisopropoxoniobates/tantalates of lathanides of the type [Ln{(μ‐OPri)2M(OPri)4}3] (M = Nb, Ln = Y( 1 ), La( 2 ), Nd( 3 ), Er( 4 ), Lu( 5 ); M = Ta, Ln = Y( 6 ), Gd( 7 )) have been prepared by the reactions of LnCl3.3PriOH with three equivalents of KM(OPri)6 in benzene. Reactions in 1:2 molar ratio of LnCl3.3PriOH with KTa(OPri)6 yielded derivatives of the type [{(PriO)3Ta(μ‐OPri)3}Ln{(μ‐OPri)2Ta(OPri)4}(Cl)] (Ln = Y( 8 ), Gd( 9 )), which on interactions with one equivalent of KOPri afforded [{(PriO)3Ta(μ‐OPri)3}Ln {(μ‐OPri)2Ta(OPri)4}(OPri)] (Ln = Y( 10 ), Gd( 11 )). All these derivatives have been characterized by elemental analyses and molecular weight measurements as well as by their spectroscopic [IR, 1H and 13C NMR (Y, La, Lu), electronic (Nd, Er)] studies. 89Y NMR studies have also been carried out on derivatives ( 6 ), ( 8 ), and ( 10 ).  相似文献   

4.
Reactions of Cp*NbCl4 and Cp*TaCl4 with Trimethylsilyl‐azide, Me3Si‐N3. Molecular Structures of the Bis(azido)‐Oxo‐Bridged Complexes [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) and [Cp*TaCl2(μ‐N3)]2(μ‐O) (Cp* = Pentamethylcyclopentadienyl) The chloro ligands in Cp*TaCl4 (1c) can be stepwise substituted for azido ligands by reactions with trimethylsilyl azide, Me3Si‐N3 (A) , to generate the complete series of the bis(azido)‐bridged dimers [Cp*TaCl3‐n(N3)n(μ‐N3)]2 ( n = 0 (2c) , n = 1 (3c) , n = 2 (4c) and n = 3 (5c) ). If the solvent CH2Cl2 contains traces of water, an additional oxo bridge is incorporated to give [Cp*‐TaCl2(μ‐N3)]2(μ‐O) (6c) or [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) (7c) , respectively. Both 6c and 7c are also formed in stoichiometric reactions from [Cp*TaCl2(μ‐OH)]2(μ‐O) (8c) and A . Analogous reactions of Cp*NbCl4 (1b) with A were used to prepare the azide‐rich dinuclear products [Cp*NbCl3‐n(N3)n(μ‐N3)]2 (n = 2 (4b) , and n = 3 (5b) ), and [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) (7b) . The mononuclear complex Cp*Ta(N3)Me3 (10c) is obtained from Cp*Ta(Cl)Me3 and A . All azido complexes were characterised by their IR as well as their 1H and 13C NMR spectra; X‐ray crystal structure analyses are available for 6c and 7b .  相似文献   

5.
[Cp2Ln(μ-SR)]2 was reacted with Ph2C=C=O to yield ketene mono-insertion products [Cp2Ln(μ-η1:η2-OC(SR)=CPh2)]2 [R=Bn, Ln=Yb (1), Er (2), Y (3) and R--Ph, Ln=Yb (4)], indicating that the reactions of organolanthanide thiolates with ketenes are independent of the nature of the thiolate ligand and the ketene as well as the reaction condition. These reactions could provide an efficient method for the synthesis of organolanthanide complexes with the a-thiolate-substituted enolate ligand. All these complexes were characterized by elemental analysis and spectroscopic properties and the structure of complex 1 was determined through X-ray single crystal diffraction analysis.  相似文献   

6.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

7.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

8.
The reaction of YbCl3 with two equivalents of NaN‐(SiMe3)2 has afforded a mixture of several ytterbium bis(trimethylsilyl) amides with the known complexes [Yb{N(SiMe3)2}2(μ‐Cl)(thf)]2 ( 1 ) and [Yb{N(SiMe3)2}3]( 4 ) as the main products and the cluster compound [Yb3Cl4O{N(SiMe3)2}3(thf)3]( 2 ) as a minor product. Treatment of 1 and 2 with hot n‐heptane gave the basefree complex [Yb{N(SiMe3)2}2(μ‐Cl)]2 ( 3 ) in small yield. The structures of compounds 1—4 and the related peroxo complex [Yb2{N(SiMe3)2}4(μ‐O2)(thf)2]( 5 ) have been investigated by single crystal X‐ray diffraction. In the solid‐state, 3 shows chlorobridged dimers with terminal amido ligands (av. Yb—Cl = 262.3 pm, av. Yb—N = 214.4 pm). Additional agostic interactions are observed from the ytterbium atoms to four methyl carbon atoms of the bis(trimethylsilyl)amido groups (Yb···C = 284—320 pm). DFT calculations have been performed on suitable model systems ([Yb2(NH2)4(μ‐Cl)2(OMe2)2]( 1m ), [Yb2(NH2)4(μ‐Cl)2]( 3m ), [Yb‐(NH2)3]( 4m ), [Yb2(NH24(μ‐O2)(OMe2)2]( 5m ), [Yb{N‐(SiMe3)2}2Cl] ( 3m/2 ) and Ln(NH2)2NHSiMe3 (Ln = Yb ( 6m ), Y ( 7m )) in order to rationalize the different experimentally observed Yb—N distances, to support the assignment of the O—O stretching vibration (775 cm ‐1) in the Raman spectrum of complex 5 and to examine the nature of the agostic‐type interactions in σ‐donorfree 3 .  相似文献   

9.
Recrystallization of Ln(NO3)3 (Ln = Sm, Eu, Yb) in the presence of 18‐crown‐6 under aqueous conditions yielded [Ln(NO3)3(H2O)3] · 18‐crown‐6. X‐ray crystallography revealed isomorphous structures for each of the lanthanide complexes where [Ln(NO3)3(H2O)3] is involved in hydrogen bonding interactions with 18‐crown‐6. The transition point where the structural motif changes from [Ln(18‐crown‐6)(NO3)3] (with the metal residing in the crown cavity) to [Ln(NO3)3(H2O)3] · 18‐crown‐6 has been identified as at the Nd/Sm interface. A similar investigation involving [Ln(tos)3(H2O)6] (tos = p‐toluenesulfonate) and 18‐crown‐6 were resistant to crown incorporation. X‐ray studies show extensive intra‐ and intermolecular hydrogen bonding is present.  相似文献   

10.
[K(18C6)]2[Pd2Cl6] ( 1 ) (18C6 = 18‐crown‐6) was found to react with pyridines in a strictly stoichiometric ratio 1 : 2 in methylene chloride or nitromethane to yield trichloropalladate(II) complexes [K(18C6)][PdCl3(py*)] (py* = py, 2a ; 4‐Bnpy, 2b ; 4‐tBupy, 2c ; Bn = benzyl; tBu = tert‐butyl). The reaction of 1 with pyrimidine (pyrm) in a 1 : 1 ratio led to the formation of the pyrimidine‐bridged bis(trichloropalladate) complex [K(18C6)]2[(PdCl3)2(μ‐pyrm)] ( 3 ). The identities of the complexes were confirmed by means of NMR spectroscopy (1H, 13C) and microanalysis. The X‐ray structure analysis of 2a reveals square‐planar coordination of the Pd atom in the [PdCl3(py)]? anion. The pyridine plane forms with the complex plane an angle of 55.8(2)°. In the [K(18C6)]+ cation the K+ lies outside the mean plane of the crown ether (defined by the 6 O atoms) by 0.816(1) Å. There are tight K···Cl contacts between the cation and the anion (K···Cl1 3.340(2) Å, K···Cl2 3.166(2) Å). To gain an insight into the conformation of the [PdCl3(py)]? anion, DFT calculations were performed showing that the equilibrium structure ( 6eq ) has an angle between the pyridine ligand and the complex plane of 35.3°. Rotation of the pyridine ligand around the Pd–N vector exhibited two transition states where the pyridine ligand lies either in the complex plane ( 6TS pla, 0.87 kcal/mol above 6eq ) or is perpendicular to it ( 6TS per, 3.76 kcal/mol above 6eq ). Based on an energy decomposition analysis the conformation of the anion is discussed in terms of repulsive steric interactions and of stabilizing σ and π orbital interactions between the PdCl3? moiety and the pyridine ligand.  相似文献   

11.
Herein we present a systematic study of the structures and magnetic properties of six coordination compounds with mixed azide and zwitterionic carboxylate ligands, [M(N3)2(2‐mpc)] (2‐mpc=N‐methylpyridinium‐2‐carboxylate; M=Co for 1 and Mn for 2 ), [M(N3)2(4‐mpc)] (4‐mpc=N‐methylpyridinium‐4‐carboxylate; M=Co for 3 and Mn for 4 ), [Co3(N3)6(3‐mpc)2(CH3OH)2] ( 5 ), and [Mn3(N3)6(3‐mpc)2] ( 6 ; 3‐mpc=N‐methylpyridinium‐3‐carboxylate). Compounds 1 – 3 consist of one‐dimensional uniform chains with (μ‐EO‐N3)2(μ‐COO) triple bridges (EO=end‐on); 5 is also a chain compound but with alternating [(μ‐EO‐N3)2(μ‐COO)] triple and [(EO‐N3)2] double bridges; Compound 4 contains two‐dimensional layers with alternating [(μ‐EO‐N3)2(μ‐COO)] triple, [(μ‐EO‐N3)(μ‐COO)] double, and (EE‐N3) single bridges (EE=end‐to‐end); 6 is a layer compound in which chains similar to those in 5 are cross‐linked by a μ3‐1,1,3‐N3 azido group. Magnetically, the three CoII compounds ( 1 , 3 , and 5 ) all exhibit intrachain ferromagnetic interactions but show distinct bulk properties: 1 displays relaxation dynamics at very low temperature, 3 is an antiferromagnet with field‐induced metamagnetism due to weak antiferromagnetic interchain interactions, and 5 behaves as a noninnocent single‐chain magnet influenced by weak antiferromagnetic interchain interactions. The magnetic differences can be related to the interchain interactions through π–π stacking influenced by different substitution positions in the ligands and/or different magnitudes of intrachain coupling. All of the MnII compounds show overall intrachain/intralayer antiferromagnetic interactions. Compound 2 shows the usual one‐dimensional antiferromagnetism, whereas 4 and 6 exhibit different weak ferromagnetism due to spin canting below 13.8 and 4.6 K, respectively.  相似文献   

12.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

13.
《中国化学会会志》2017,64(1):61-72
The stable tribridged dicopper(I) carboxylate complexes [Cu2(μ‐dppm)2(μ‐O2CR)]BF4 (RCO2 = formate (OFc), m1 ; acetate (OAc), m2 ; benzoate (OBAc), m3 ; o‐toluate (O2TAc), m4 ; p‐toluate (O4TAc), m5 ; 4‐phenylbutyrate (O4PBAc), m6 ; 2‐nitrobenzoate (O2NBAc), m7 ), abbreviated as MM, and neutral dipyridyl compounds (NN; NN = 4,4′‐bipyridine (bpy), 1,2‐bis(4‐pyridyl)ethane (bpa), trans ‐1,2‐bis(4‐pyridyl)ethylene (bpe), 4,4′‐trimethylenedipyridine (tmp)) can form dynamic equilibria in CH2Cl2. From the equilibrium mixtures containing MM and NN with MM/NN = 1:1, nine 2:1 oligomers ([( m1 )2(μ‐bpy)](BF4)2 ( o1a (BF4)2), [( m3 )2(μ‐bpe)](BF4)2 ( o3c (BF4)2), [( m3 )2(μ‐tmp)](BF4)2 ( o3d (BF4)2), [( m4 )2(μ‐bpe)](BF4)2 ( o4c (BF4)2), [( m5 )2(μ‐bpy)](BF4)2 ( o5a (BF4)2), [( m5 )2(μ‐tmp)](BF4)2 ( o5d (BF4)2), [( m6 )2(μ‐bpa)](BF4)2 ( o6b (BF4)2), [( m7 )2(μ‐bpy)](BF4)2 ( o7a (BF4)2), [( m7 )2(μ‐bpa)](BF4)2 ( o7b (BF4)2)), one 2:3 oligomer ([{( m2 )(bpy)}2(μ‐bpy)](BF4)2 ( o2a (BF4)2)), and five 1:1 polymers ([( m2 )(μ‐bpe)] n (BF4 ) n ( p2c (BF4 ) n ), [( m2 )(μ‐tmp)] n (BF4 ) n ( p2d (BF4 ) n ), [( m3 )(μ‐bpy)] n (BF4 ) n ( p3a (BF4 ) n ), [( m3 )(μ‐tmp)] n (BF4 ) n ( p3d (BF4 ) n ), [( m7 )(μ‐tmp)] n (BF4 ) n ( p7d (BF4 ) n )) were obtained as single crystals, and their structures were determined by X‐ray crystallography. Both experimental and theoretical results support the presence of two oligomeric species, [{Cu2(μ‐dppm)2(μ‐O2CR)}2(μ‐NN)]2+ and [{Cu2(μ‐dppm)2(μ‐O2CR)(NN)}2(μ‐NN)]2+), in dynamic equilibrium. The oligomers (such as o3d (BF4)2) can serve as seeds to induce the formation of soluble coordination polymers as crystals (such as p3d (BF4)n ).  相似文献   

14.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

15.
Chalcogen Derivatives of the Halfsandwich Tungsten(V) Complexes Cp*WCl4 and Cp*WCl4(PMe3). X‐Ray Crystal Structure Analyses of anti ‐[Cp*W(Se)(μ‐Se)]2 and Cp*W(S)2(OMe) The chalcogenation of Cp*WCl4 ( 1 ) by E(SiMe3)2 (E = S, Se) and Te(SiMe2tBu)2 in chloroform solution leads to dimeric products of the type anti‐[Cp*W(E)(μ‐E)]2 (E = S ( 3 a ), Se ( 3 b ) and Te ( 3 c )). An X‐ray structure determination of 3 b indicates a centrosymmetric molecule containing a planar W(μ‐Se)2W ring, the W–W distance (297.9(1) pm) corresponds to a single bond. In the presence of air the two terminal chalcogenido ligands (E) in 3 a – c are stepwise replaced by oxido ligands (O) to give [Cp*W(O)(μ‐E)]2 (E = S ( 5 a ), Se ( 5 b ) and Te ( 5 c )) in quantitative yields. The reaction of Cp*WCl4 with H2S or ammonium polysulfide, (NH4)2Sx (x ∼ 10), leads to Cp*W(S)2Cl ( 6 a ); the corresponding methoxy derivative, Cp*W(S)2OCH3 ( 9 a ), has been characterized by an X‐ray structure analysis. On the other hand, the reaction of Cp*WCl4(PMe3) ( 2 ) with sodium tetrasulfide, Na2S4, in dimethylformamide solution gives a mixture of mononuclear Cp*W(S)(S2)Cl ( 8 a ), dinuclear [Cp*W(S)(μ‐S)]2 ( 3 a ) and a trinuclear side‐product of composition Cp*2W3S7 ( 13 a ). Terminal sulfido ligands are replaced by terminal oxido ligands in solution in the presence of oxygen. Thus, 6 a is stepwise converted into Cp*W(O)(S)Cl ( 10 a ) and CpW(O)2Cl ( 12 a ), whereas 8 a gives Cp*W(O)(S2)Cl ( 11 a ) and 13 a leads to Cp*2W3(O)S6 ( 14 a ). The disulfido complexes 8 a and 11 a are desulfurized by triphenylphosphane to give 6 a and 10 a . The new complexes have been characterized by their IR and NMR spectra and by mass spectrometry.  相似文献   

16.
Diethylenetriamine‐N,N,N′,N′′,N′′‐pentaacetic acid (DTPA) and 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) scandium(III) complexes were investigated in the solution and solid state. Three 45Sc NMR spectroscopic references suitable for aqueous solutions were suggested: 0.1 M Sc(ClO4)3 in 1 M aq. HClO4 (δSc=0.0 ppm), 0.1 M ScCl3 in 1 M aq. HCl (δSc=1.75 ppm) and 0.01 M [Sc(ox)4]5? (ox2?=oxalato) in 1 M aq. K2C2O4 (δSc=8.31 ppm). In solution, [Sc(dtpa)]2? complex (δSc=83 ppm, ?ν=770 Hz) has a rather symmetric ligand field unlike highly unsymmetrical donor atom arrangement in [Sc(dota)]? anion (δSc=100 ppm, ?ν=4300 Hz). The solid‐state structure of K8[Sc2(ox)7] ? 13 H2O contains two [Sc(ox)3]3? units bridged by twice “side‐on” coordinated oxalate anion with Sc3+ ion in a dodecahedral O8 arrangement. Structures of [Sc(dtpa)]2? and [Sc(dota)]? in [(Hguanidine)]2[Sc(dtpa)] ? 3 H2O and K[Sc(dota)][H6dota]Cl2 ? 4 H2O, respectively, are analogous to those of trivalent lanthanide complexes with the same ligands. The [Sc(dota)]? unit exhibits twisted square‐antiprismatic arrangement without an axial ligand (TSA′ isomer) and [Sc(dota)]? and (H6dota)2+ units are bridged by a K+ cation. A surprisingly high value of the last DOTA dissociation constant (pKa=12.9) was determined by potentiometry and confirmed by using NMR spectroscopy. Stability constants of scandium(III) complexes (log KScL 27.43 and 30.79 for DTPA and DOTA, respectively) were determined from potentiometric and 45Sc NMR spectroscopic data. Both complexes are fully formed even below pH 2. Complexation of DOTA with the Sc3+ ion is much faster than with trivalent lanthanides. Proton‐assisted decomplexation of the [Sc(dota)]? complex (τ1/2=45 h; 1 M aq. HCl, 25 °C) is much slower than that for [Ln(dota)]? complexes. Therefore, DOTA and its derivatives seem to be very suitable ligands for scandium radioisotopes.  相似文献   

17.
Only a few cyclooctatetraene dianion (COT) π‐complexes of lanthanides have been crystallographically characterized. This first single‐crystal X‐ray diffraction characterization of a scandium(III) COT chloride complex, namely di‐μ‐chlorido‐bis[(η8‐cyclooctatetraene)(tetrahydrofuran‐κO )scandium(III)], [Sc2(C8H8)2Cl2(C4H8O)2] or [Sc(COT)Cl(THF)]2 (THF is tetrahydrofuran), (1), reveals a dimeric molecular structure with symmetric chloride bridges [average Sc—Cl = 2.5972 (7) Å] and a η8‐bound COT ligand. The COT ring is planar, with an average C—C bond length of 1.399 (3) Å. The Sc—C bond lengths range from 2.417 (2) to 2.438 (2) Å [average 2.427 (2) Å]. Direct comparison of (1) with the known lanthanide (Ln) analogues (La, Ce, Pr, Nd, and Sm) illustrates the effect of metal‐ion (M ) size on molecular structure. Overall, the M —Cl, M —O, and M —C bond lengths in (1) are the shortest in the series. In addition, only one THF molecule completes the coordination environment of the small ScIII ion, in contrast to the previously reported dinuclear Ln–COT–Cl complexes, which all have two bound THF molecules per metal atom.  相似文献   

18.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

19.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

20.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号