首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the title compound, C23H34O4, which is an intermediate in the synthesis of pregnane derivatives with a modified skeleton that show potent abortion‐inducing activity, the conformation of ring B is close to half‐chair due to the presence of both the C=C double bond and the axial 5β‐methyl group. Rings A and C have conformations close to chair, while ring D has a twisted conformation around the bridgehead C—C bond. Molecules are hydrogen bonded via the hydroxyl and acetoxy groups into infinite chains. Quantum‐mechanical ab initio Roothan Hartree–Fock calculations show that crystal packing might be responsible for the low values of the angles between rings A and B, and between ring A and rings C and D, as well as for a different steric position of the methyl ketone side chain compared to the geometry of the free molecule.  相似文献   

3.
A series of doubly β‐to‐β bridged cyclic ZnII porphyrin arrays were prepared by a stepwise Suzuki–Miyaura coupling reaction of borylated ZnII porphyrin with different bridge groups. The coupling of the building block of β,β′‐diboryl ZnII porphyrin 1 with different bridges provided the doubly β‐to‐β carbazole‐bridged ZnII porphyrin array 3 , the fluorene‐bridged ZnII porphyrin array 5 , the fluorenone‐bridged ZnII porphyrin array 7 , and the three‐carbazole‐bridged ZnII porphyrin ring 8 . The structural assignment of 3 was confirmed by the X‐ray diffraction analysis, which revealed a highly symmetrical and remarkably bent syn‐form structure. The incorporation of bridge units with different electronic effects results in different photophysical properties of the cyclic ZnII porphyrin arrays. Comprehensive photophysical studies demonstrate that the electron‐withdrawing bridge fluorenone has the largest electronic interaction with the ZnII porphyrin unit among the series, thus resulting in the highest two‐photon absorption cross‐section values (σ(2)) of 6570±60 GM for 7 . The present work provides a new strategy for developing porphyrin‐based optical materials.  相似文献   

4.
The first total synthesis of the β‐carboline alkaloids arenarine A (1) and arenarine B (2) is described. Methanolysis of the α‐bromoketone 9 gives 1 in good yield. Alternatively 1 can be obtained from the diazoketone 11 with boron trifluoride/methanol in poor yield. Reduction of 1 with sodium borohydride gives racemic arenarine B (2). Regioselective homolytic methylation of norharmane (4) with tert‐butyl hydroperoxide/ferrous sulfate gives the alkaloid harmane (6).  相似文献   

5.
The α,ω‐end‐capped poly(2‐methyl‐2‐oxazoline) (Cn‐POXZ‐Cn) have been synthesized by a one‐pot process using cationic ring‐opening polymerization with an appropriate initiator and terminating agent. The polymers bearing different alkyl groups C12 and C18 have molecular weight in the range of 2.4 × 103 to 14 × 103 with a small polydispersity index. The solution behavior of the free chains has been analyzed in a nonselective solvent, dichloromethane, by small‐angle neutron scattering and dynamic light scattering. These amphiphilic polymers associate in water to form flower‐like micellar structures. Critical micelle concentrations, investigated by fluorescence technique, are in the range of 0.03–0.5 g L?1 and are dependent on the hydrophilic/lipophilic balance. The structural properties of the aggregates have also been investigated by viscometry. Intrinsic viscosities of these polymers are in the same range as that of the precursors poly(2‐methyl‐2‐oxazoline) (POXZ) and mono‐functionalized polymers. Large viscosity increase corresponding to intermicellar bridging was observed in the vicinity of the micelle overlap concentration. Addition of hydroxypropyl β‐cyclodextrin (HβCD) has dissociated the aggregates and the intrinsic viscosities of the HβCD‐end‐capped chains have become comparable with the ones of POXZ precursor chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2477–2485, 2010  相似文献   

6.
β‐Carbolines ( 1–5 ) undergo electrophilic aromatic substitution with N‐bromosuccinimide under different experimental conditions. Although 6‐bromo‐nor‐harmane ( la ) obtained by bromination of nor‐harmane ( 1 ) was isolated and fully characterized sometime ago, the other bromoderivatives of nor‐harmane ( 1b‐1e ) and harmane ( 2a‐2e ) were partially described as part of the reaction mixtures. The preparation and subsequent isolation, purification and full characterization of 1b, 1c, 1d, 1e, 2a, 2b, 2c, 2d, 2e are reported (mp, R f, 1H‐nmr, 13C‐nmr and ms) together with the preparation, isolation and charaterization, for the first time, of the bromoderivatives obtained from harmine ( 3a‐3e ), harmol ( 4a, 4b ) and 7‐acetylharmol ( 5a‐5c ). As brominating reagent N‐bromosuccinimide and N‐bromosuccinimide‐silica gel in dichloromethane and in chloroform as well as the β‐carboline ‐ N‐bomosuccinimide solid mixture have been used and their uses have been compared. Semiempirical AMI and PM3 calculations have been performed in order to predict reactivity in terms of the energies of HOMO, HOMO‐LUMO difference and in terms of the charge density of β‐carbolines ( 1–5 ) and bromo‐β‐carbolines ( 1a‐1e, 2a‐2e, 3a‐3e, 4a, 4b, 5a, 5b and 5c ) (Scheme 1). Theoretical and experimental results are discussed briefly.  相似文献   

7.
The preparation of three new N‐Fmoc‐protected (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) β2‐homoamino acids with proteinogenic side chains (from Ile, Tyr, and Met) is described, the key step being a diastereoselective amidomethylation of the corresponding Ti‐enolates of 3‐acyl‐4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐ones with CbzNHCH2OMe/TiCl4 (Cbz=(benzyloxy)carbonyl) in yields of 60–70% and with diastereoselectivities of >90%. Removal of the chiral auxiliary with LiOH or NaOH gives the N‐Cbz‐protected β‐amino acids, which were subjected to an N‐Cbz/N‐Fmoc (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) protective‐group exchange. The method is suitable for large‐scale preparation of Fmoc‐β2hXaa‐OH for solid‐phase syntheses of β‐peptides. The Fmoc‐amino acids and all compounds leading to them have been fully characterized by melting points, optical rotations, IR, 1H‐ and 13C‐NMR, and mass spectra, as well as by elemental analyses.  相似文献   

8.
Twelve iridium complexes with general formula of Ir(C^N)2(LX) [C^N represents the cyclometalated ligand, i.e. 2‐(2,4‐difluorophenyl) pyridine (dfppy), 2‐phenylpyridine (ppy), dibenzo{f, h}quinoxaline (DBQ); LX stands for β‐diketonate, i.e. acetyl acetonate (acac), 1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate (CBDK), 1‐(carbazol‐9‐yl)‐5,5,6,6,7,7,7‐heptafluoroheptane‐2,4‐diketonate (CHFDK), 1‐(N‐ethyl‐carbazol‐3‐yl)‐4,4,5,5,6,6,6‐heptafluorohexane‐1,3‐diketonate (ECHFDK)] are synthesized, characterized and their photophysical properties are systemically studied. In addition, crystals of Ir(DBQ)2(CHFDK) and Ir(DBQ)2(acac) are obtained and characterized by single crystal X‐ray diffraction. The choice of these iridium complexes provides an opportunity for tracing the effect of the triplet energy level of ancillary ligands on the photophysical and electrochemical behaviors. Data show that if the triplet energy level of the β‐diketonate is higher than that of the Ir(C^N)2 fragment and there is no superposition on the state density map, strong 3LC or 3MLCT‐based phosphorescence can be obtained. Alternatively, if the state density map of the two parts are in superposition, the 3LC or 3MLCT‐based transition will be quenched at room temperature. Density functional theory calculations show that these complexes can be divided into two categories. The lowest excited state is mainly determined by C^N but not β‐diketonate when the difference between the triplet energy levels of the two parts is large. However, when this difference is very small, the lowest excited state will be determined by both sides. This provides a satisfactory explanation for the experimental observations.  相似文献   

9.
The Cd atom in Cd(Hmmi)2I2 is five‐coordinate with a trigonal bipyramidal geometry in which the apical sites are occupied by I and O atoms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Asymmetric syntheses of the following 17‐membered macrocyclic spermine alkaloids are presented: (−)‐(S)‐protoverbine (=(8S)‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecane‐6‐one; 1 ), (+)‐(S)‐protomethine (=(2S)‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 2 ), (−)‐(S)‐buchnerine (=(8S)‐8‐(4‐methoxyphenyl)‐1,5,9,13‐tetraazacycloheptadecane‐6‐one; 8 ), (+)‐(S)‐verbamethine (=(+)‐(2S)‐9‐[(E)‐phenylprop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 4 ), (−)‐(S)‐verbacine (=(−)‐(8S)‐1‐[(E)‐phenylprop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 3 ), (−)‐(S)‐verbasikrine (=(−)‐(8S)‐1‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 26 ), (−)‐(S)‐isoverbasikrine (=(−)‐(8S)‐1‐[(Z)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 25 ), (+)‐(S)‐verbamekrine (=(+)‐(2S)‐9‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 23 ), and (+)‐(S)‐isoverbamekrine (=(+)‐(2S)‐9‐[(Z)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 24 ). Effective methods for 1H‐NMR determination of the enantiomeric purity in which (S)‐2‐hydroxy‐2‐phenylacetic acid and (S)‐2‐acetoxy‐2‐phenylacetic acid are used as shift reagents for 1, 8 , and related macrocyclic alkaloids are described.  相似文献   

11.
There are two types of Cd in the title compound, the six‐coordinated Cd atom in the cation is in a distorted octahedral geometry while the four‐coordinated Cd in the anion shows a distorted tetrahedral geometry. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
13.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

14.
The title compounds were synthesized by the microwave‐assisted, mostly solvent‐free bis Kabachnik–Fields condensation of β‐alanine and γ‐aminobutyric acid or their esters with formaldehyde and >P(O)H species, such as dialkyl phosphites and diphenylphosphine oxide.  相似文献   

15.
Optically pure S(?) and R(+)‐poly(α‐methyl‐α‐ethyl‐β‐propiolactones) (PMEPLs) of controlled low molecular weights were synthesized by anionic polymerization of the corresponding optically active monomers, and characterized using gel permeation chromatography, Maldi‐TOF mass spectrometry, and NMR spectroscopy. Blends of PMEPLs of opposite configurations and different molecular weights were investigated. All blends lead to the formation of a stereocomplex and its crystallization prevails over a wide range of mixing ratios. The stereocomplex melts 30–40 °C above that of the corresponding pure polymers, depending on the molecular weight; pairs of polymers having similar molecular weights exhibit the highest melting temperatures and enthalpies of fusion. Finally, when the stereocomplex is dispersed in a PMEPL matrix, it acts as a very effective nucleation agent for the crystallization of the polymer in excess. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2380–2389, 2007  相似文献   

16.
The synthesis and characterization of α,ω‐di(2‐methyl‐2,3‐epoxypropyl)polyisobutylene are reported. The epoxidation of α,ω‐di(isobutenyl)polyisobutylene was achieved at room temperature with dimethyldioxirane, which proved to be a very effective reagent for epoxidation without the formation of byproducts. A very good agreement was found for the conversion determined by 1H NMR and matrix‐assisted laser desorption/ionization mass spectrometry (MALDI HMS). The epoxy end groups were converted quantitatively into aldehyde termini with zinc bromide as a catalyst. The aldehyde groups were then reduced with LiAlH4 into primary hydroxyl functions to obtain α,ω‐di(2‐methyl‐3‐hydroxylpropyl)polyisobutylene with high efficiency. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3974–3986, 2002  相似文献   

17.
The title compounds, 4 and 7 , have been prepared from the corresponding α‐amino acid derivative selenocystine ( 1 ) by the following sequence of steps: cleavage of the Se? Se bond with NaBH4, p‐methoxybenzyl (PMB) protection of the SeH group, Fmoc or Boc protection at the N‐atom and Arndt–Eistert homologation (Schemes 1 and 2). A β3‐heptapeptide 8 with an N‐terminal β3‐hSec(PMB) residue was synthesized on Rink amide AM resin and deprotected (‘in air’) to give the corresponding diselenide 9 , which, in turn, was coupled with a β3‐tetrapeptide thiol ester 10 by a seleno‐ligation. The product β3‐undecapeptide was identified as its diselenide and its mixed selenosulfide with thiophenol (Scheme 3). The differences between α‐ and β‐Sec derivatives are discussed.  相似文献   

18.
A series of unreported chiral β‐carbolines 4 with trifluoromethyl group at position‐1 and chiral carboxamide chains or amino acid ester chains at position‐3 has been designed and synthesized. The results of bioassay in vitro show that compounds 4e, 4i and 4k show 78.8%, 84.0% and 78.9% inhibition on monoamine oxidase, in 1 mmol/L, respectively, and compound 4e also exhibit 60.9% inhibitory activity on tumor lung cell A‐549 in 10?5 mmol/L. In view of different configuration, the inhibitory activity on monoamine oxidase of S‐enantiomer of the target compound is better than that of R‐enantiomer.  相似文献   

19.
The structural properties of four mixed β‐peptides with alternating β2/β3‐ or β3/β2‐sequences have been analyzed by two‐dimensional homonuclear 1H‐NMR‐ and CD spectroscopic measurements. All four β‐peptides fold into (P)‐helices with twelve‐ and ten‐membered H‐bonded rings (Figs. 3–6). CD Spectra (Fig. 2) of the mixed β3/β2‐hexapeptide 4a and β3/β2‐nonapeptide 5a , indicating that peptides of this type also adopt the 12/10‐helical conformation, were confirmed by NMR structural analysis. For the deprotected β3/β2‐nonapeptide 5d , NOEs not consistent with the 10/12 helix have been observed, showing that the stability of the helix decreases upon N‐terminal deprotection. From the NMR structures obtained, an idealized helical‐wheel representation was generated (Fig. 7), which will be used for the design of further 12/10 or 10/12 helices.  相似文献   

20.
Ethylene oxide (EO) has been block‐polymerized with both ε‐caprolactone (ε‐CL) and γ‐methyl‐ε‐caprolactone (MCL) through the combination of the anionic polymerization of EO and the ring‐opening polymerization (ROP) of ε‐CL and MCL. ω‐Hydroxyl poly(ethylene oxide) has been reacted with triethylaluminum (OH/Al = 1) and converted into a macroinitiator for ROP of ε‐CL and MCL. In toluene at room temperature, this polymerization leads to a bimodal molecular weight distribution as a result of monomer insertion in only some of the aluminum alkoxide bonds. However, in a more polar solvent (methylene chloride) added with 1 equiv of a Lewis base (pyridine), the expected diblock is formed selectively, and this indicates that aggregation of the active species in toluene is responsible for a macroinitiator efficiency of less than 1. A series of amphiphilic diblock copolymers with poly(ε‐caprolactone) (semicrystalline) and poly(γ‐methyl‐ε‐caprolactone) (amorphous) as the hydrophobic blocks have been prepared and characterized with size exclusion chromatography, 1H NMR, IR, and wide‐angle X‐ray scattering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1132–1142, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号