首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonstabilized α‐O‐substituted tertiary organolithium species are difficult to generate, and the α‐S‐substituted analogues are configurationally unstable. We now report that they can both be generated easily and trapped with a range of electrophiles with high enantioselectivity, providing ready access to a range of enantioenriched tertiary alcohols and thiols. The configurational stability of the α‐S‐organolithium species was enhanced by using a less coordinating solvent and short reaction times.  相似文献   

2.
Reported herein is an efficient copper(I)‐catalytic system for the diastereo‐ and enantioselective 1,2‐addition of 1,1‐bis[(pinacolato)boryl]alkanes to protected imines to afford synthetically valuable enantioenriched β‐aminoboron compounds bearing contiguous stereogenic centers. The reaction exhibits a broad scope with respect to protected imines and 1,1‐bis[(pinacolato)boryl]alkanes, thus providing β‐aminoboronate esters with excellent diastereo‐ and enantioselectivity. The synthetic utility of the obtained β‐aminoboronate ester was also demonstrated.  相似文献   

3.
The conversion of saturated fatty acids to high value chiral hydroxy‐acids and lactones poses a number of synthetic challenges: the activation of unreactive C?H bonds and the need for regio‐ and stereoselectivity. Here the first example of a wild‐type cytochrome P450 monooxygenase (CYP116B46 from Tepidiphilus thermophilus) capable of enantio‐ and regioselective C5 hydroxylation of decanoic acid 1 to (S)‐5‐hydroxydecanoic acid 2 is reported. Subsequent lactonization yields (S)‐δ‐decalactone 3 , a high value fragrance compound, with greater than 90 % ee. Docking studies provide a rationale for the high regio‐ and enantioselectivity of the reaction.  相似文献   

4.
A Michael addition initiated cyclopropanation/retro‐Claisen rearrangement tandem reaction was developed for the enantioselective synthesis of highly functionalized 2,5‐dihydrooxepines. In the presence of a chiral oxazaborolidinium ion (COBI) catalyst, the reaction proceeds to give good yields and high enantioselectivity.  相似文献   

5.
A palladium(II)‐catalyzed enantioselective α‐alkylation of azlactones with nonconjugated alkenes is described. The reaction employs a chiral BINOL‐derived phosphoric acid as the source of stereoinduction, and a cleavable bidentate directing group appended to the alkene to control the regioselectivity and stabilize the nucleopalladated alkylpalladium(II) intermediate in the catalytic cycle. A wide range of azlactones were found to be compatible under the optimal reaction conditions to afford products bearing α,α‐disubstituted α‐amino‐acid derivatives with high yields and high enantioselectivity.  相似文献   

6.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

7.
We describe the development of a Pd‐catalyzed decarboxylative asymmetric allylic alkylation of α‐nitro allyl esters to afford acyclic tetrasubstituted nitroalkanes. Optimization of the reaction parameters revealed unique ligand and solvent combinations crucial for achieving chemo‐ and enantioselective C‐alkylation of electronically challenging benzylic nitronates and sterically encumbered 2‐allyl esters. Substrates were efficiently accessed in a combinatorial fashion by a cross‐Claisen/ α‐arylation sequence. The method provides functional group orthogonality that complements nucleophilic imine allylation strategies for α‐tertiary amine synthesis.  相似文献   

8.
The first catalytic asymmetric construction of 3,3′‐bisindole skeletons bearing both axial and central chirality has been established by organocatalytic asymmetric addition reactions of 2‐substituted 3,3′‐bisindoles with 3‐indolylmethanols (up to 98 % yield, all >95:5 d.r., >99 % ee). This reaction also represents the first highly enantioselective construction of axially chiral 3,3′‐bisindole skeletons, and utilizes the strategy of introducing a bulky group to the ortho‐position of prochiral 3,3′‐bisindoles. This reaction not only provides a good example for simultaneously controlling axial and central chirality in one operation, but also serves as a new strategy for catalytic enantioselective construction of axially chiral 3,3′‐bisindole backbones from prochiral substrates.  相似文献   

9.
The first highly enantioselective iridium‐catalyzed allylic alkylation that provides access to products bearing an allylic all‐carbon quaternary stereogenic center has been developed. The reaction utilizes a masked acyl cyanide (MAC) reagent, which enables the one‐pot preparation of α‐quaternary carboxylic acids, esters, and amides with a high degree of enantioselectivity. The utility of these products is further explored through a series of diverse product transformations.  相似文献   

10.
An enantioselective three‐component radical reaction of quinolines or pyridines with enamides and α‐bromo carbonyl compounds by dual photoredox and chiral Brønsted acid catalysis is presented. A range of valuable chiral γ‐amino‐acid derivatives are accessible in high chemo‐, regio‐, and enantioselectivity from simple, readily available starting materials under mild reaction conditions. Using the same strategy, the asymmetric synthesis of 1,2‐diamine derivatives is also reported.  相似文献   

11.
A chiral Brønsted base catalyzed asymmetric annulation of ortho‐alkynylanilines has been developed to access axially chiral naphthyl‐C2‐indoles via vinylidene ortho‐quinone methide (VQM) intermediates. This strategy provides a unique organocatalytic atroposelective route to axially chiral aryl‐C2‐indole skeletons with excellent enantioselectivity and functional‐group tolerance. This transformation was applicable to decagram‐scale preparation (50.0 g) with perfect enantioselectivity through simple recrystallization. Moreover, the utility of this reaction was demonstrated by a variety of transformations towards chiral naphthyl‐C2‐indoles for a series of carbon–heteroatom bond formations. Furthermore, the prepared axially chiral naphthyl‐C2‐indoles were applied as a chiral skeleton for organocatalytic aza‐Baylis–Hillman reaction and asymmetric formal [4+2] tandem cyclization to give the corresponding adducts in high yields with improved enantioselectivity and diastereoselectivity.  相似文献   

12.
Bis(1,3‐dithiol‐2‐ylidene)‐substituted subtriazachlorin was formed because of an unusual reaction of a 1,3‐dithiole‐2‐one‐fused subphthalocyanine in a triethylphosphite‐mediated tetrathiafulvalene synthesis. In this novel molecule, the bis(1,3‐dithiol‐2‐ylidene)ethane moiety and subtriazachlorin structure are fused, resulting in an electron‐donating ability and broad absorption in the near‐infrared region.  相似文献   

13.
Herein, we demonstrate the use of heterostructures comprised of Co/β‐Mo2C@N‐CNT hybrids for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline electrolyte. The Co can not only create a well‐defined heterointerface with β‐Mo2C but also overcomes the poor OER activity of β‐Mo2C, thus leading to enhanced electrocatalytic activity for HER and OER. DFT calculations further proved that cooperation between the N‐CNTs, Co, and β‐Mo2C results in lower energy barriers of intermediates and thus greatly enhances the HER and OER performance. This study not only provides a simple strategy for the construction of heterostructures with nonprecious metals, but also provides in‐depth insight into the HER and OER mechanism in alkaline solution.  相似文献   

14.
Sialic acids are ubiquitous components of mammalian cell membranes and key regulators of cellular recognition events. Located at the non‐reducing termini of bioactive gangliosides, these essential building blocks are fused to the polysaccharide core via a characteristic α‐linkage, and rarely occur in the monomeric form. Effective chemical strategies to enable α‐sialylation are urgently required to construct well‐defined tools for glycomics. To complement existing chemoenzymatic strategies, an α‐selective process has been devised based on the site‐selective introduction of fluorine at C3 (more than 20 examples, up to 90 % yield). Predicated on localized particle charge inversion (C?Hδ+→C?Fδ?), fluorine insertion simultaneously augments the anomeric effect, enhances electrophilicity at C2 and mitigates elimination. A stereochemical induction model is postulated that spans the SN continuum and validates the role of the C?F bond in orchestrating α‐selectivity.  相似文献   

15.
An unprecedented nickel‐catalyzed 1,1‐alkylboration of electronically unbiased alkenes has been developed, providing straightforward access to secondary aliphatic boronic esters from readily available materials under very mild reaction conditions. The regioselectivity of this reaction is governed by a unique pyridyl carboxamide ligated catalyst, rather than the substrates. Moreover, this transformation shows excellent chemo‐ and regio‐selectivity and remarkably good functional‐group tolerance. We also demonstrate that under balloon pressure, ethylene can also be utilized as a substrate. Additionally, competence experiments indicate that selective bond formation is favored at the α‐position of boron and preliminary mechanistic studies indicate that the key step in this three‐component reaction involves a 1,2‐nickel migration.  相似文献   

16.
α‐Amino nitriles tethered to alkenes through a urea linkage undergo intramolecular C‐alkenylation on treatment with base by attack of the lithionitrile derivatives on the N′‐alkenyl group. A geometry‐retentive alkene shift affords stereospecifically the E or Z isomer of the 5‐alkenyl‐4‐iminohydantoin products from the corresponding starting E ‐ or Z N ′‐alkenyl urea, each of which may be formed from the same N ‐allyl precursor by stereodivergent alkene isomerization. The reaction, formally a nucleophilic substitution at an sp2 carbon atom, allows the direct regioselective incorporation of mono‐, di‐, tri‐, and tetrasubstituted olefins at the α‐carbon of amino acid derivatives. The initially formed 5‐alkenyl iminohydantoins may be hydrolyzed and oxidatively deprotected to yield hydantoins and unsaturated α‐quaternary amino acids.  相似文献   

17.
A general and benign iron‐catalyzed α‐alkylation reaction of ketones with primary alcohols has been developed. The key to success of the reaction is the use of a Knölker‐type complex as catalyst (2 mol %) in the presence of Cs2CO3 as base (10 mol %) under hydrogen‐borrowing conditions. Using 2‐aminobenzyl alcohol as alkylation reagent allows for the “green” synthesis of quinoline derivatives.  相似文献   

18.
Reported here is a terminal‐selective, remote asymmetric hydroalkylation of olefins with racemic α‐bromo amides. The reaction proceeds by NiH‐catalyzed alkene isomerization and subsequent alkylation reaction, and can enantioconvergently introduce an unsymmetrical secondary alkyl group from a racemic α‐bromo amide onto a terminal C(sp3)?H position along the hydrocarbon chain of the alkene. This mild process affords a range of structurally diverse chiral α‐alkylalkanoic amides in excellent yields, and high regio‐ and enantioselectivities. In addition, the synthetic utility of this protocol is further highlighted by the regioconvergent conversion of industrial raw materials of isomeric olefin mixtures into enantioriched α‐alkylalkanoic amides on large scale.  相似文献   

19.
Herein we report acid‐directed β‐C(sp3)‐H arylation of α‐amino acids enabled by pyridine‐type ligands. This reaction does not require the installation of an exogenous directing group, is scalable, and enables the preparation of Fmoc‐protected unnatural amino acids in three steps. The pyridine‐type ligands are crucial for the development of this new C(sp3)‐H arylation.  相似文献   

20.
The first enantioselective total synthesis of (−)‐cycloclavine was accomplished in 8 steps and 7.1 % overall yield. Key features include the first catalytic asymmetric cyclopropanation of allene, mediated by the dirhodium catalyst Rh2(S‐TBPTTL)4, and the enone 1,2‐addition of a new TEMPO carbamate methyl carbanion. An intramolecular strain‐promoted Diels–Alder methylenecyclopropane (IMDAMC) reaction provided a pivotal tricyclic enone intermediate with more than 99 % ee after crystallization. The synthesis of (−)‐ 1 was completed by a late‐stage intramolecular Diels–Alder furan (IMDAF) cycloaddition to install the indole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号