首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [U(TrenTIPS)(THF)][BPh4] ( 1 ; TrenTIPS=N{CH2CH2NSi(iPr)3}3) with NaPH2 afforded the novel f‐block terminal parent phosphide complex [U(TrenTIPS)(PH2)] ( 2 ; U–P=2.883(2) Å). Treatment of 2 with one equivalent of KCH2C6H5 and two equivalents of benzo‐15‐crown‐5 ether (B15C5) afforded the unprecedented metal‐stabilized terminal parent phosphinidene complex [U(TrenTIPS)(PH)][K(B15C5)2] ( 4 ; U?P=2.613(2) Å). DFT calculations reveal a polarized‐covalent U?P bond with a Mayer bond order of 1.92.  相似文献   

2.
Reaction of [U(TrenTIPS)(PH2)] ( 1 , TrenTIPS=N(CH2CH2NSiPri3)3) with C6H5CH2K and [U(TrenTIPS)(THF)][BPh4] ( 2 ) afforded a rare diuranium parent phosphinidiide complex [{U(TrenTIPS)}2(μ‐PH)] ( 3 ). Treatment of 3 with C6H5CH2K and two equivalents of benzo‐15‐crown‐5 ether (B15C5) gave the diuranium μ‐phosphido complex [{U(TrenTIPS)}2(μ‐P)][K(B15C5)2] ( 4 ). Alternatively, reaction of [U(TrenTIPS)(PH)][Na(12C4)2] ( 5 , 12C4=12‐crown‐4 ether) with [U{N(CH2CH2NSiMe2But)2CH2CH2NSi(Me)(CH2)(But)}] ( 6 ) produced the diuranium μ‐phosphido complex [{U(TrenTIPS)}(μ‐P){U(TrenDMBS)}][Na(12C4)2] [ 7 , TrenDMBS=N(CH2CH2NSiMe2But)3]. Compounds 4 and 7 are unprecedented examples of uranium phosphido complexes outside of matrix isolation studies, and they rapidly decompose in solution underscoring the paucity of uranium phosphido complexes. Interestingly, 4 and 7 feature symmetric and asymmetric UPU cores, respectively, reflecting their differing steric profiles.  相似文献   

3.
Two‐electron reductive carbonylation of the uranium(VI) nitride [U(TrenTIPS)(N)] ( 2 , TrenTIPS=N(CH2CH2NSiiPr3)3) with CO gave the uranium(IV) cyanate [U(TrenTIPS)(NCO)] ( 3 ). KC8 reduction of 3 resulted in cyanate dissociation to give [U(TrenTIPS)] ( 4 ) and KNCO, or cyanate retention in [U(TrenTIPS)(NCO)][K(B15C5)2] ( 5 , B15C5=benzo‐15‐crown‐5 ether) with B15C5. Complexes 5 and 4 and KNCO were also prepared from CO and the uranium(V) nitride [{U(TrenTIPS)(N)K}2] ( 6 ), with or without B15C5, respectively. Complex 5 can be prepared directly from CO and [U(TrenTIPS)(N)][K(B15C5)2] ( 7 ). Notably, 7 reacts with CO much faster than 2 . This unprecedented f‐block reactivity was modeled theoretically, revealing nucleophilic attack of the π* orbital of CO by the nitride with activation energy barriers of 24.7 and 11.3 kcal mol?1 for uranium(VI) and uranium(V), respectively. A remarkably simple two‐step, two‐electron cycle for the conversion of azide to nitride to cyanate using 4 , NaN3 and CO is presented.  相似文献   

4.
The synthesis and characterisation is presented of the compounds [An(TrenDMBS){Pn(SiMe3)2}] and [An(TrenTIPS){Pn(SiMe3)2}] [TrenDMBS=N(CH2CH2NSiMe2But)3, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; TrenTIPS=N(CH2CH2NSiPri3)3, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U−Sb and Th−Sb moieties are unprecedented examples of any kind of An−Sb molecular bond, and the U−Bi bond is the first two‐centre‐two‐electron (2c–2e) one. The Th−Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U−Bi complex is the heaviest 2c–2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An−An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U−Pn bonds degrade by homolytic bond cleavage, whereas the more redox‐robust thorium compounds engage in an acid–base/dehydrocoupling route.  相似文献   

5.
The synthesis and characterisation is presented of the compounds [An(TrenDMBS){Pn(SiMe3)2}] and [An(TrenTIPS){Pn(SiMe3)2}] [TrenDMBS=N(CH2CH2NSiMe2But)3, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; TrenTIPS=N(CH2CH2NSiPri3)3, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U?Sb and Th?Sb moieties are unprecedented examples of any kind of An?Sb molecular bond, and the U?Bi bond is the first two‐centre‐two‐electron (2c–2e) one. The Th?Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U?Bi complex is the heaviest 2c–2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An?An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U?Pn bonds degrade by homolytic bond cleavage, whereas the more redox‐robust thorium compounds engage in an acid–base/dehydrocoupling route.  相似文献   

6.
Treatment of [Ph3EMe][I] with [Na{N(SiMe3)2}] affords the ylides [Ph3E=CH2] (E=As, 1As ; P, 1P ). For 1As this overcomes prior difficulties in the synthesis of this classical arsonium‐ylide that have historically impeded its wider study. The structure of 1As has now been determined, 45 years after it was first convincingly isolated, and compared to 1P , confirming the long‐proposed hypothesis of increasing pyramidalisation of the ylide‐carbon, highlighting the increasing dominance of E+?C? dipolar resonance form (sp3‐C) over the E=C ene π‐bonded form (sp2‐C), as group 15 is descended. The uranium(IV)–cyclometallate complex [U{N(CH2CH2NSiPri3)2(CH2CH2SiPri2CH(Me)CH2)}] reacts with 1As and 1P by α‐proton abstraction to give [U(TrenTIPS)(CHEPh3)] (TrenTIPS=N(CH2CH2NSiPri3)3; E=As, 2As ; P, 2P ), where 2As is an unprecedented structurally characterised arsonium‐carbene complex. The short U?C distances and obtuse U‐C‐E angles suggest significant U=C double bond character. A shorter U?C distance is found for 2As than 2P , consistent with increased uranium‐ and reduced pnictonium‐stabilisation of the carbene as group 15 is descended, which is supported by quantum chemical calculations.  相似文献   

7.
The title complex, [Zr(CH3)(C5H5)2][CH3B(C6F5)3], crystallizes as an ion pair linked through an unsymmetrical methyl bridge. The bridging Zr—Me distance [2.556 (2) Å] is significantly longer than the terminal Zr—Me distance [2.251 (3) Å], while the Zr—C—B angle approaches linearity [169.1 (2)°].  相似文献   

8.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) with diphenyldiazomethane leads to [{W(CO)5}Cp*P=NN{W(CO)5}=CPh2] ( 2 ). Compound 2 is a rare example of a phosphadiazadiene ligand (R‐P=N?N=CR′R′′) complex. At temperatures above 0 °C, 2 decomposes into the complex [{W(CO)5}PCp*{N(H)N=CPh2)2] ( 3 ), among other species. The reaction of the pentelidene complexes [Cp*E{W(CO)5}2] (E=P, As) with diazomethane (CH2NN) proceeds differently. For the arsinidene complex ( 1 b ), only the arsaalkene complex 4 b [{W(CO)5}21:2‐(Cp*)As=CH2}] is formed. The reaction with the phosphinidene complex ( 1 a ) results in three products, the two phosphaalkene complexes [{W(CO)5}21:2‐(R)P=CH2}] ( 4 a : R=Cp*, 5 : R=H) and the triazaphosphole derivative [{W(CO)5}P(Cp*)‐CH2‐N{W(CO)5}=N‐N(N=CH2)] ( 6 a ). The phosphaalkene complex ( 4 a ) and the arsaalkene complex ( 4 b ) are not stable at room temperature and decompose to the complexes [{W(CO)5}4(CH2=E?E=CH2)] ( 7 a : E=P, 7 b : E=As), which are the first examples of complexes with parent 2,3‐diphospha‐1,3‐butadiene and 2,3‐diarsa‐1,3‐butadiene ligands.  相似文献   

9.
A process of ion‐pair formation in the system Cp2ZrMe2/methylaluminoxane (MAO) has been studied by means of density functional theory quantum‐chemical calculations for MAOs with different structures and reactive sites. An interaction of Cp2ZrMe2 with a MAO of the composition (AlMeO)6 results in the formation of a stable molecular complex of the type Al5Me6O5Al(Me)O–Zr(Me)Cp2 with an equilibrium distance r(Zr–O) of 2.15 Å. The interaction of Cp2ZrMe2 with “true” MAO of the composition (Al8Me12O6) proceeds with a tri‐coordinated aluminum atom in the active site (OAlMe2) and yields the strongly polarized molecular complex or the μ‐Me‐bridged contact ion pair ( d ) [Cp2(Me)Zr(μMe)Al≡MAO] with the distances r(Zr–μMe) = 2.38 Å and r(Al–μMe) = 2.28 Å. The following interaction of the μ‐Me contact ion pair ( d ) with AlMe3 results in a formation of the trimethylaluminum (TMA)‐separated ion pair ( e ) [Cp2Zr(μMe)2AlMe2]+–[MeMAO] with r[Zr–(MeMAO)] equal to 4.58 Å. The calculated composition and structure of ion pairs ( d ) and ( e ) are consistent with the 13C NMR data for the species detected in the Cp2ZrMe2/MAO system. An interaction of the TMA‐separated ion pair ( e ) with ethylene results in the substitution of AlMe3 by C2H4 in a cationic part of the ion pair ( e ), and the following ethylene insertion into the Zr–Me bond. This reaction leads to formation of ion pair ( f ) of the composition [Cp2ZrCH2CH2CH3]+–[Me‐MAO] named as the propyl‐separated ion pair. Ion pair ( f ) exhibits distance r[Zr–(MeMAO)] = 3.88 Å and strong Cγ‐agostic interaction of the propyl group with the Zr atom. We suppose this propyl‐separated ion pair ( f ) to be an active center for olefin polymerization.  相似文献   

10.
Two new nickel complexes withplanar surrounding of Ni [Ni(dnpdtc)(PPh3)(NCS)] (1) and [Ni(dnpdtc)(PPh3)(CN)] (2) (dnpdtc=N, N‐dipropyldithiocarbamate) were prepared from the parent dithiocarbamate and were characterized by elemental analysis, electronic, IR and NMR spectra. The structures of both the complexes were determined by single crystal X‐ray crystallography. Thioureide stretching vibrations occur at 1528 cm‐1 and 1521 cm‐1 for 1 and 2 respectively. Large 31P chemical shifts were observed for the two compounds. A significant asymmetry in Ni—S bond distances was observed in compound 1 [2.1700(16) and 2.2251(17)Å] whereas in compound 2 the bond distances were almost similar [2.2100(14) and 2.2122(13)Å]. A marginal difference was observed with respect to the thioureide bond distances [1.340(6)Å for 1 and 1.312(5)Å for 2 ]. The observation clearly supports the less effective trans influence of SCN over PPh3. However, PPh3 and CN show almost similar trans influence.  相似文献   

11.
Treatment of [Ph3EMe][I] with [Na{N(SiMe3)2}] affords the ylides [Ph3E=CH2] (E=As, 1As ; P, 1P ). For 1As this overcomes prior difficulties in the synthesis of this classical arsonium-ylide that have historically impeded its wider study. The structure of 1As has now been determined, 45 years after it was first convincingly isolated, and compared to 1P , confirming the long-proposed hypothesis of increasing pyramidalisation of the ylide-carbon, highlighting the increasing dominance of E+−C dipolar resonance form (sp3-C) over the E=C ene π-bonded form (sp2-C), as group 15 is descended. The uranium(IV)–cyclometallate complex [U{N(CH2CH2NSiPri3)2(CH2CH2SiPri2CH(Me)CH2)}] reacts with 1As and 1P by α-proton abstraction to give [U(TrenTIPS)(CHEPh3)] (TrenTIPS=N(CH2CH2NSiPri3)3; E=As, 2As ; P, 2P ), where 2As is an unprecedented structurally characterised arsonium-carbene complex. The short U−C distances and obtuse U-C-E angles suggest significant U=C double bond character. A shorter U−C distance is found for 2As than 2P , consistent with increased uranium- and reduced pnictonium-stabilisation of the carbene as group 15 is descended, which is supported by quantum chemical calculations.  相似文献   

12.
The chemistry of 2‐phosphaethynolate is burgeoning, but there remains much to learn about this ligand, for example its reduction chemistry is scarce as this promotes P‐C‐O fragmentations or couplings. Here, we report that reduction of [U(TrenTIPS)(OCP)] (TrenTIPS=N(CH2CH2NSiPri3)3) with KC8/2,2,2‐cryptand gives [{U(TrenTIPS)}2{μ‐η2(OP):η2(CP)‐OCP}][K(2,2,2‐cryptand)]. The coordination mode of this trapped 2‐phosphaethynolate is unique, and derives from an unprecedented highly reduced and highly bent form of this ligand with the most acute P‐C‐O angle in any complex to date (P‐C‐O ? ≈127°). The characterisation data support a mixed‐valence diuranium(III/IV) formulation, where backbonding from uranium gives a highly reduced form of the P‐C‐O unit that is perhaps best described as a uranium‐stabilised OCP2?. radical dianion. Quantum chemical calculations reveal that this gives unprecedented carbene character to the P‐C‐O unit, which engages in a weak donor–acceptor interaction with one of the uranium ions.  相似文献   

13.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

14.
The reaction of acetylferrocene [Fe(η‐C5H5)(η‐C5H4COCH3)] (1) with (2‐isopropyl‐5‐methylphenoxy) acetic acid hydrazide [CH3C6H3CH(CH3)2OCH2CONHNH2] (2) in refluxing ethanol gives the stable light‐orange–brown Schiff base 1‐[(2‐isopropyl‐5‐methylphenoxy)hydrazono] ethyl ferrocene, [CH3C6H3CH(CH3)2OCH2CONHN?C(CH3)Fe(η‐C5H5)(η‐C5H4)] (3). Complex 3 has been characterized by elemental analysis, IR, 1H NMR and single crystal X‐ray diffraction study. It crystallizes in the monoclinic space group P21/n, with a = 9.6965(15), b = 7.4991(12), c = 29.698(7) Å, β = 99.010(13) °, V = 2132.8(7) Å3, Dcalc = 1.346 Mg m?3; absorption coefficient, 0.729 mm?1. The crystal structure clearly shows the characteristic [N? H···O] hydrogen bonding between the two adjacent molecules of 3. This acts as a bidentale ligand, which, on treatment with [Ru(CO)2Cl2] n, gives a stable bimetallic yellow–orange complex (4). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Reaction of [U(TrenTIPS)] [ 1 , TrenTIPS=N(CH2CH2NSiiPr3)3] with 0.25 equivalents of P4 reproducibly affords the unprecedented actinide inverted sandwich cyclo‐P5 complex [{U(TrenTIPS)}2(μ‐η55‐cyclo‐P5)] ( 2 ). All prior examples of cyclo‐P5 are stabilized by d‐block metals, so 2 shows that cyclo‐P5 does not require d‐block ions to be prepared. Although cyclo‐P5 is isolobal to cyclopentadienyl, which usually bonds to metals via σ‐ and π‐interactions with minimal δ‐bonding, theoretical calculations suggest the principal bonding in the U(P5)U unit is polarized δ‐bonding. Surprisingly, the characterization data are overall consistent with charge transfer from uranium to the cyclo‐P5 unit to give a cyclo‐P5 charge state that approximates to a dianionic formulation. This is ascribed to the larger size and superior acceptor character of cyclo‐P5 compared to cyclopentadienyl, the strongly reducing nature of uranium(III), and the availability of uranium δ‐symmetry 5f orbitals.  相似文献   

16.
2‐Mercapto‐methyltetrazolate, Smetetraz, acts as monoanionic, monodentate ligand in a number of technetium compounds. Anionic TcV complexes of the types [TcO(Smetetraz)4] and [TcN(Smetetraz)4]2– are formed when (Bu4N)[TcVOCl4] or (Bu4N)[TcVINCl4], respectively, react with Na(Smetetraz). Reduction of the metal takes place in the latter case. (Bu4N)2[TcN(Smetetraz)4] crystallises in the monoclinic space group Pc (a = 9.701(5), b = 17.570(5), c = 16.821(10) Å, β = 96.50(3)°, Z = 2). The Tc atom is situated 0.580(3) Å above the basal plane of a square pyramid which is formed by the sulfur atoms and the nitrido ligand as its apex. The Tc–S bond lengths lie between 2.384(3) and 2.410(3) Å. [Tc(PPh3)(Smetetraz)3(CH3CN)] is formed during the reaction of [TcCl3(PPh3)2(CH3CN)] with NaSmetetraz as blue needles with co‐crystallised solvent toluene (space group C2/c, a = 24.188(4), b = 14.373(1), c = 25.617(5) Å, β = 109.48(1)°, Z = 8). The metal atom is coordinated by PPh3 and CH3CN in the axial position of a trigonal bipyramid. All three aryl rings are on the sterically less strained side of the plane defined by the sulfur atoms. The Tc–S bond lengths range between 2.233(2) and 2.247(2) Å.  相似文献   

17.
The title compound, [Zr(C7H7)3(C15H17)], (I), crystallizes from light petroleum with two independent mol­ecules in the asymmetric unit. Whereas in the parent mol­ecule, Zr(η5‐C5H5)(CH2Ph)3, all three Zr—CH2Ph angles are equal, in (I), they differ significantly. In spite of their different environments, both independent mol­ecules in (I) exhibit a small, an expected, and a large Zr—CH2Ph angle. The angles are similar to those of the closely related tri­benzyl­[η5‐(benzyl­di­methyl­silyl)­cyclo­penta­dienyl]­zirconium complex. The smallest Zr—CH2Ph angle and the consequently relatively short Zr?Cipso distance are indicative of η2‐bonding of the benzyl group.  相似文献   

18.
Synthesis and Crystal Structure of the Adducts [DB-18C6] · CH3CN · CH3CSOH and [DC-18C6](CH3CSOH)2 as well as of the Salt-like Compounds [Cs(B-15C5)2]CH3CSS and [Cs(DB-18C6)]2S5(DMF)21) The reaction products of crown ethers, cesium, and sulfur in aprotic solvents like acetonitrile and dimethylformamide strongly depend on the reaction conditions. Using CH3CN as a solvent, sometimes neutral host-guest adducts crystallize only, e.g., [dibenzo-18C6] · CH3CN · CH3CSOH (monoclinic, S. G. P21/c, Z = 4, a = 9.73(1) Å, b = 22.03(1) Å, c = 11.86(1) Å, β = 91.8(1)°) or [dicyclohexyl-18C6](CH3CSOH)2 (monoclinic, S. G. P21/n, Z = 2, a = 7.75(1) Å, b = 10.32(1) Å, c = 17.73(1) Å, β = 95.7(1)°). The monothioacetic acid, CH3CSOH, must be regarded as the first product of the hydrolysis of CH3CN. Furthermore, another product of this kind of hydrolysis, CH3CSSH, is obtained too. Therefore, we also obtain the salt-like compound [Cs(benzo-15C5)2]CH3CSS (monoclinic, S. G. C2/c, Z = 4, a = 16.05(1) Å, b = 16.73(1) Å, c = 13.11(1) Å, β = 106.3(1)°). If the solvent DMF is used, the pentasulfide [Cs(dibenzo-18C6)]2S5(DMF)2 crystallizes (monoclinic, S. G. P21/n, Z = 4, a = 14.79(1) Å, b = 14.24(1) Å, c = 25.74(1) Å, β = 92.7(1°. The S52? anions show the cis-conformation.  相似文献   

19.
Six polynuclear chlorobismuthates are formed in the reaction between BiCl3 and Ph4PCl by variation of the molar ratio of the educts, the solvents and the crystallisation methods: [Ph4P]3[Bi2Cl9] · 2 CH2Cl2, [Ph4P]3[Bi2Cl9] · CH3COCH3, [Ph4P]2[Bi2Cl8] · 2 CH3COCH3, [Ph4P]4[Bi4Cl16] · 3 CH3CN, [Ph4P]4[Bi6Cl22], and [Ph4P]4[Bi8Cl28]. We report the crystal structure of [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 which crystallises with triclinic symmetry in the S. G. P1 No. 2, with the lattice parameters a = 13.080(3) Å, b = 14.369(3) Å, c = 21.397(4) Å, α = 96.83(1)°, β = 95.96(1)°, γ = 95.94(2)°, V = 3943.9(1) Å3, Z = 2. The anion is formed from two face‐sharing BiCl6‐octahedra. [Ph4P]2[Bi2Cl8] · 2 CH3COCH3 crystallises with monoclinic symmetry in the S. G. P21/n, No. 14, with the lattice parameters a = 14.045(5) Å, b = 12.921(4) Å, c = 17.098(3) Å, β = 111.10(2)°, V = 2894.8(2) Å3, Z = 2. The anion is a bi‐octahedron of two square‐pyramids, joined by a common edge. The octahedral coordination is achieved with two acetone ligands. [Ph4P]4[Bi4Cl16] · 3 CH3CN crystallises in the triclinic S. G., P1, No. 2, with the lattice parameters a = 14.245(9) Å, b = 17.318(6) Å, c = 24.475(8) Å, α = 104.66(3)°, β = 95.93(3)°, γ = 106.90(4)°, V = 5486(4) Å3, Z = 2. Two Bi2Cl8 dimers in syn‐position form the cubic anion. Lattice parameters of [Ph4P]3[Bi2Cl9] · CH3COCH3 are also given. The solvated compounds are desolvated at approximately 100 °C. [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 and [Ph4P]3[Bi2Cl9] · CH3COCH3 show the same sequence of phase transitions after desolvation. All compounds melt into a liquid in which some order is observed and transform on cooling into the glassy state.  相似文献   

20.
Reaction of 2‐chloro‐1,3,2‐diazaarsolenes and ‐diazaphospholenes with Tl[Co(CO)4] gives instable complexes of type [Co(ER2)(CO)4] which decarbonylated to yield [Co(ER2)(CO)3]. Spectroscopic and X‐ray diffraction studies revealed that the tetracarbonyl complexes can be formulated as ion pair for E = P and as covalent metalla‐arsine for E = As, and the tricarbonyl complexes as carbene‐like species with a formal E=Co double bond. A similar reactivity towards Tl[Co(CO)4] was also inferred for 1,3,2‐diazastibolenes although the products were not isolable and their constitution remained uncertain. Evaluation of structural and computational data suggests that the weak and polarized Co–As bond in [Co(AsR2)(CO)4] can be characterized as an “inverse” M→L donor‐acceptor bond. The computational studies disclosed further η2(EN)‐coordination of the EN2C2 heterocycle as an alternative to the formation of a carbene‐like structure for [Co(ER2)(CO)3]. The η2‐complex is less stable for E = P but close in energy for E = As and more stable than the carbene‐like complex for E = Sb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号