首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Acrylates have gained importance because of their ease of conversion to high‐molecular‐weight polymers and their broad industrial use. Methyl methacrylate (MMA) is a well‐known monomer for free radical polymerization, but its α‐methyl substituent restricts the chemical modification of the monomer and therefore the properties of the resulting polymer. The presence of a heteroatom in the methyl group is known to increase the polymerizability of MMA. Methyl α‐hydroxymethylacrylate (MHMA), methyl α‐methoxymethylacrylate (MC1MA), methyl α‐acetoxymethylacrylate (MAcMA) show even better conversions to high‐molecular‐weight polymers than MMA. In contrast, the polymerization rate is known to decrease as the methyl group is replaced by ethyl in ethyl α‐hydroxymethylacrylate (EHMA) and t‐butyl in t‐butyl α‐hydroxymethylacrylate (TBHMA). In this study, quantum mechanical tools (B3LYP/6‐31G*) have been used in order to understand the mechanistic behavior of the free radical polymerization reactions of acrylates. The polymerization rates of MMA, MHMA, MC1MA, MAcMA, EHMA, TBHMA, MC1AN (α‐methoxymethyl acrylonitrile), and MC1AA (α‐methoxymethyl acrylic acid) have been evaluated and rationalized. Simple monomers such as allyl alcohol (AA) and allyl chloride (AC) have also been modeled for comparative purposes. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

2.
The gas‐phase reactions of O3 with 1‐octene, trans‐7‐tetradecene, 1,2‐dimethyl‐1‐cyclohexene, and α‐pinene have been studied in the presence of an OH radical scavenger, primarily using in situ atmospheric pressure ionization tandem mass spectrometry (API‐MS), to investigate the products formed from the reactions of the thermalized Criegee intermediates in the presence of water vapor and 2‐butanol (1‐octene and trans‐7‐tetradecene forming the same Criegee intermediate). With H3O+(H2O)n as the reagent ions, ion peaks at 149 u ([M + H]+) were observed in the API‐MS analyses of the 1‐octene and trans‐7‐tetradecene reactions, which show a neutral loss of 34 u (H2O2) and are attributed to the α‐hydroxyhydroperoxide CH3(CH2)5CH(OH)OOH, which must therefore have a lifetime with respect to decomposition of tens of minutes or more. No evidence for the presence of α‐hydroxyhydroperoxides was obtained in the 1,2‐dimethyl‐1‐cyclohexene or α‐pinene reactions, although the smaller yields of thermalized Criegee intermediates in these reactions makes observation of α‐hydroxyhydroperoxides from these reactions less likely than from the 1‐octene and trans‐7‐tetradecene reactions. Quantifications of 2,7‐octanedione from the 1,2‐dimethyl‐1‐cyclohexene reactions and of pinonaldehyde from the α‐pinene reactions were made by gas chromatographic analyses during reactions with cyclohexane and with 2‐butanol as the OH radical scavenger. The measured yields of 2,7‐octanedione from 1,2‐dimethyl‐1‐cyclohexene and of pinonaldehyde from α‐pinene were 0.110 ± 0.020 and 0.164 ± 0.029, respectively, and were independent of the OH radical scavenger used. Reaction mechanisms are presented and discussed. © 2001 Wiley Periodicals, Inc. Int J Chem Kinet 34: 73–85, 2002  相似文献   

3.
A diverse range of Lewis acidic alkyl, vinyl and aryl boranes and borenium compounds that are capable of new carbon–carbon bond formation through selective migratory group transfer have been synthesised. Utilising a series of heteroleptic boranes [PhB(C6F5)2 ( 1 ), PhCH2CH2B(C6F5)2 ( 2 ), and E‐B(C6F5)2(C6F5)C=C(I)R (R=Ph 3 a , nBu 3 b )] and borenium cations [phenylquinolatoborenium cation ([QOBPh][AlCl4], 4 )], it has been shown that these boron‐based compounds are capable of producing novel allyl‐ boron and boronium compounds through complex rearrangement reactions with various propargyl esters and carbamates. These reactions yield highly functionalised, synthetically useful boron substituted organic compounds with substantial molecular complexity in a one‐pot reaction.  相似文献   

4.
The development of novel iridium(III) complexes has continued as an important area of research owing to their highly tunable photophysical properties and versatile applications. In this report, three heteroleptic dimesitylboron‐containing iridium(III) complexes, [Ir(p‐B‐ppy)2(N^N)]+ {p‐B‐ppy=2‐(4‐dimesitylborylphenyl)pyridine; N^N=dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) ( 1 ), dipyrido[3,2‐d:2′,3′‐f]quinoxaline (dpq) ( 2 ), and 1,10‐phenanthroline (phen) ( 3 )}, were prepared and fully characterized electrochemically, photophysically, and computationally. Altering the conjugated length of the N^N ligands allowed us to tailor the photophysical properties of these complexes, especially their luminescence wavelength, which could be adjusted from λ=583 to 631 nm in CH2Cl2. All three complexes were evaluated as visible‐light‐absorbing sensitizers for the photogeneration of hydrogen from water and as photocatalysts for the photopolymerization of methyl methacrylate. The results showed that all of them were active in both photochemical reactions. High activity for the photosensitizer (over 1158 turnover numbers with 1 ) was observed, and the system generated hydrogen even after 20 h. Additionally, poly(methyl methacrylate) with a relatively narrow molecular‐weight distribution was obtained if an initiator (i.e., ethyl α‐bromophenylacetate) was used. The living character of the photoinduced polymerization was confirmed on the basis of successful chain‐extension experiments.  相似文献   

5.
Borylation of the vinylic C? H bond of 1,4‐dioxene, 2,3‐dihydrofuran, 3,4‐dihydro‐2H‐pyran and their γ‐substituted analogs was carried out in the presence of bis(pinacolato)diboron (B2pin2) and a catalytic amount of IrI‐dtbpy (dtbpy=4,4′‐di‐tert‐butyl‐2,2′‐bipyridine) complex. The two boron atoms in B2pin2 participated in the coupling, thus giving two equivalents of the coupling product from one equivalent of B2pin2. The borylation of 1,4‐dioxene in hexane resulted in 81 % yield at room temperature. The borylation of 2,3‐dihydrofurans at 80 °C in octane suffered from low regioselectivity, and gave a mixture of α‐ and β‐coupling products even for hindered γ‐disubstituted analogs, but γ‐substituted analogs of 3,4‐dihydro‐2H‐pyran achieved high α‐selectivity, giving single coupling products. This protocol was applied to the syntheses of a key precursor of vineomycinone B2 methyl ester and other C‐substituted D ‐glucals by borylation of protected D ‐glucals with B2pin2 to give α‐boryl glucal followed by cross‐coupling with haloarenes, benzyl bromide, and allyl bromide. A catalytic cycle that involves the oxidative addition of sp2 C? H bond to iridium(III)‐trisboryl intermediate as the rate‐determining step has been proposed.  相似文献   

6.
Boron‐containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron‐containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2(OH)xO(3?x/2) (x=0–6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM‐22 isomorphously substituted with boron (B‐MWW). Using 11B solid‐state NMR spectroscopy, we show that the majority of boron species in B‐MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B‐MWW for ODH of propane falsifies the hypothesis that site‐isolated BO3 units are the active site in boron‐based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium‐based catalysts and provides an important piece of the mechanistic puzzle.  相似文献   

7.
As the most nucleophilic porphyrins, meso‐ or β‐lithiated porphyrins were generated by iodine–lithium exchange reactions of the corresponding iodoporphyrins with n‐butyllithium at ?98 °C. Porphyrinyllithiums thus prepared were used for synthesis of dimesitylporphyrinylboranes through reactions with fluorodimesitylborane. The boryl groups proved to serve as an electron‐accepting unit to alter the photophysical and electrochemical properties. In addition, 5‐diarylamino‐15‐dimesitylboryl‐substituted donor–accepter porphyrins showed increased intramolecular charge‐transfer character in the S1 state. Furthermore, the reaction of β‐lithiated porphyrin with dichloromesitylborane provided a boron‐bridged porphyrin dimer, which exhibited a conjugative interaction between two porphyrin units through the vacant p‐orbital on the boron center.  相似文献   

8.
Co‐pyrolysis of B2Br4 with PBr3 at 480 °C gave, in addition to the main product closo‐1,2‐P2B4Br4, conjuncto‐3,3′‐(1,2‐P2B4Br3)2 ( 1 ) and the twelve‐vertex closo‐1,7‐P2B10Br10 ( 2 ), both in low yields. X‐ray structure determination for 1 [triclinic, space‐group P1 with a = 7.220(2) Å, b = 7.232(2) Å, c = 8.5839(15) Å, α = 97.213(15)°, β = 96.81(2)°, γ = 94.07(2)° and Z = 1] confirmed that 1 adopts a structure consisting of two symmetrically boron–boron linked distorted octahedra with the bridging boron atoms in the 3,3′‐positions and the phosphorus atoms in the 1,2‐positions. The intercluster 2e/2c B–B bond length is 1.61(3) Å. The shortest boron–boron bond within the cluster framework is 1.68(2) Å located between the boron atoms antipodal to the phosphorus atoms. The icosahedral phosphaborane 2 was characterized by 11B‐11B COSY NMR spectroscopy showing cross peaks indicative for the isomer with the phosphorus atoms in 1,7‐positions. Both the X‐ray data of 1 and the NMR spectroscopic data of 1 and 2 give further evidence for the influence of an antipodal effect of heteroatoms to cross‐cage boron atoms and, vice versa, of an additional shielding of the phosphorus atoms caused by B‐Hal substitution at the boron positions trans to phosphorus.  相似文献   

9.
The boron subphthalocyanine cation, B(SubPc)+, has been prepared as a salt of a weakly coordinating carborane anion, CHB11Me5Br6, by a metathesis reaction of Et3Si(CHB11Me5Br6) with B(SubPc)Cl. The separation of the cation and anion in the X‐ray structure indicates coordinative unsaturation at the boron center, and this is corroborated by DFT calculations. A strongly Lewis acidic nature for the B(SubPc)+ cation is indicated by its hydrolysis to an unusual product, the di‐meso‐N‐protonated μ‐oxo dimer, [H(SubPc)B‐O‐B(SubPc)H]2+. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:209–216, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20223  相似文献   

10.
From solutions of chromium(III) perchlorate and periodic acid, single crystals of γ‐HIO3 were obtained and characterized by single‐crystal X‐ray diffraction, Raman spectroscopy and thermal analysis. The compound crystallizes in the orthorhombic crystal system, space group Pbca (a = 563.92, b = 611.10, c = 1507.16 pm). The structure is built up by dimers (HIO3)2, which are formed by hydrogen bonds. The crystals are metastable and transform into the stable modification, α‐HIO3, within a couple of weeks.  相似文献   

11.
The enantioselective ketimine–ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine–ene reactions of 2‐aryl‐3H‐indol‐3‐ones with α‐methylstyrenes were achieved by utilizing a B(C6F5)3/chiral phosphoric acid (CPA) catalyst. These ketimine–ene reactions proceed well with low catalyst loading (B(C6F5)3/CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2‐allyl‐indolin‐3‐ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6F5)3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen‐bonding interactions, especially the enhanced N?H???O hydrogen‐bonding interaction, differentiates the free energy of the transition states of CPA and B(C6F5)3/CPA, thereby inducing the improvement of stereoselectivity.  相似文献   

12.
In order to explore the existence of α‐effect in gas‐phase SN2@N reactions, and to compare its similarity and difference with its counterpart in SN2@C reactions, we have carried out a theoretical study on the reactivity of six α‐oxy‐Nus (FO?, ClO?, BrO?, HOO?, HSO?, H2NO?) in the SN2 reactions toward NR2Cl (R = H, Me) and RCl (R = Me, i‐Pr) using the G2(+)M theory. An enhanced reactivity induced by the α‐atom is found in all examined systems. The magnitude of the α‐effect in the reactions of NR2Cl (R = H, Me) is generally smaller than that in the corresponding SN2 reaction, but their variation trend with the identity of α‐atom is very similar. The origin of the α‐effect of the SN2@N reactions is discussed in terms of activation strain analysis and thermodynamic analysis, indicating that the α‐effect in the SN2@N reactions largely arises from transition state stabilization, and the “hyper‐reactivity” of these α‐Nus is also accompanied by an enhanced thermodynamic stability of products from the n(N) → σ*(O?Y) negative hyperconjugation. Meanwhile, it is found that the reactivity of oxy‐Nus in the SN2 reactions toward NMe2Cl is lower than toward i‐PrCl, which is different from previous experiments, that is, the SN2 reactions of NH2Cl is more facile than MeCl. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
N‐Ylide complexes of Ir have been generated by C(sp3)?H activation of α‐pyridinium or α‐imidazolium esters in reactions with [Cp*IrCl2]2 and NaOAc. These reactions are rare examples of C(sp3)?H activation without a covalent directing group, which—even more unusually—occur α to a carbonyl group. For the reaction of the α‐imidazolium ester [ 3 H]Cl, the site selectivity of C?H activation could be controlled by the choice of metal and ligand: with [Cp*IrCl2]2 and NaOAc, C(sp3)?H activation gave the N‐ylide complex 4 ; in contrast, with Ag2O followed by [Cp*IrCl2]2, C(sp2)?H activation gave the N‐heterocyclic carbene complex 5 . DFT calculations revealed that the N‐ylide complex 4 was the kinetic product of an ambiphilic C?H activation. Examination of the computed transition state for the reaction to give 4 indicated that unlike in related reactions, the acetate ligand appears to play the dominant role in C?H bond cleavage.  相似文献   

14.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

15.
Herein, we analyse the catalytic boron–boron dehydrocoupling reaction that leads from the base‐stabilised diborane(6) [H2B(hpp)]2 (hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido[1,2‐a]pyrimidinate) to the base‐stabilised diborane(4) [H2B(hpp)]2. A number of potential transition‐metal precatalysts was studied, including transition‐metal complexes of the product diborane(4). The synthesis and structural characterisation of two further examples of such complexes is presented. The best results for the dehydrocoupling reactions were obtained with precatalysts of Group 9 metals in the oxidation state of +I. The active catalyst is formed in situ through a multistep process that involves reduction of the precatalyst by the substrate [H2B(hpp)]2, and mechanistic investigations indicate that both heterogeneous and (slower) homogeneous reaction pathways play a role in the dehydrocoupling reaction. In addition, hydride abstraction from [H2B(hpp)]2 and related diboranes is analysed and the possibility for subsequent deprotonation is discussed by probing the protic character of the cationic boron–hydrogen compounds with NMR spectroscopic analysis.  相似文献   

16.
To examine the impact of metal moieties that have different triplet energies on the photoisomerization of B(ppy)Mes2 compounds (ppy=2‐phenyl pyridine, Mes=mesityl), three metal‐functionalized B(ppy)Mes2 compounds, Re‐B , Au‐B , and Pt‐B , have been synthesized and fully characterized. The metal moieties in these three compounds are Re(CO)3(tert‐Bu2bpy)(C?C), Au(PPh3)(C?C), and trans‐Pt(PPh3)2(C?C)2, respectively, which are connected to the ppy chelate through the alkyne linker. Our investigation has established that the ReI unit completely quenches the photoisomerization of the boron unit because of a low‐lying intraligand charge transfer/MLCT triplet state. The AuI unit, albeit with a triplet energy that is much higher than that of B(ppy)Mes2, upon conjugation with the ppy chelate unit, substantially increases the contribution of the π→π* transition, localized on the conjugated chelate backbone in the lowest triplet state, thereby leading to a decrease in the photoisomerization quantum efficiency (QE) of the boron chromophore when excited at 365 nm. At higher excitation energies, the photoisomerization QE of Au‐B is comparable to that of the silyl–alkyne‐functionalized B(ppy)Mes2 ( TIPS‐B ), which was attributable to a triplet‐state‐sensitization effect by the AuI unit. The PtII unit links two B(ppy)Mes2 together in Pt‐B , thereby extending the π‐conjugation through both chelate backbones and leading to a very low QE of the photoisomerization. In addition, only one boron unit in Pt‐B undergoes photoisomerization. The isomerization of the second boron unit is quenched by an intramolecular energy transfer of the excitation energy to the low‐energy absorption band of the isomerized boron unit. TD‐DFT computations and spectroscopic studies of the three metal‐containing boron compounds confirm that the photoisomerization of the B(ppy)Mes2 chromophore proceeds through a triplet photoactive state and that metal units with suitable triplet energies can be used to tune this system.  相似文献   

17.
Second‐order rate constants have been measured spectrophotometrically for the reactions of Op‐nitrophenyl thionobenzoate ( 1 , PNPTB) with HO?, butan‐2,3‐dione monoximate (Ox?, α‐nucleophile), and p‐chlorophenoxide (p‐ClPhO?, normal nucleophile) in DMSO/H2O of varying mixtures at (25.0±0.1) °C. Reactivity of these nucleophiles significantly increases with increasing DMSO content. HO? is less reactive than p‐ClPhO? toward 1 up to 70 mol % DMSO although HO? is over six pKa units more basic in these media. Ox? is more reactive than p‐ClPhO? in all media studied, indicating that the α‐effect is in effect. The magnitude of the α‐effect (i.e., k/kp) increases with the DMSO content up to 50 mol % DMSO and decreases beyond that point. However, the dependency of the α‐effect profile on the solvent for reactions of 1 contrasts to that reported previously for the corresponding reactions of p‐nitrophenyl benzoate ( 2 , PNPB); reactions of 1 result in much smaller α‐effects than those of 2 . Breakdown of the α‐effect into ground‐state (GS) and transition‐state (TS) effects shows that the GS effect is not responsible for the α‐effect across the solvent mixtures. The role of the solvent has been discussed on the basis of the bell‐shaped α‐effect profiles found in the current study as well as in our previous studies, that is, a GS effect in the H2O‐rich region through H‐bonding interactions and a TS effect in the DMSO‐rich media through mutual polarizability interactions.  相似文献   

18.
Because the construction of the C?C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C?C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron‐based catalysts applied in the field of C?C bond‐formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C6F5)3; 2) organoboron acids, RB(OH)2, and their ester derivatives; 3) borenium ions, (R2BL)X; and 4) other miscellaneous kinds.  相似文献   

19.
The crystal structures of three sulfonate pseudohalide derivatives of boron subphthalocyanine (BsubPc) are described and compared with four structures of three published sulfonate derivatives. Benzenesulfonate boron subphthalocyanine [(benzenesulfonato)(subphthalocyaninato)boron, C30H17BN6O3S, (I)] crystallizes in the space group P with Z = 2. The structure contains two centrosymmetric π‐stacking interactions between the concave faces of the isoindoline units in the BsubPc ligands. 3‐Nitrobenzenesulfonate boron subphthalocyanine [(3‐nitrobenzenesulfonato)(subphthalocyaninato)boron, C30H16BN7O5S, (II)] crystallizes in the space group P21/c with Z = 4. The structure contains an intermolecular S—O...π interaction from the sulfonate group to a five‐membered N‐containing ring of an isoindoline unit on the concave side of a neighbouring BsubPc ligand, at a distance of 3.151 (3) Å. The crystal of methanesulfonate boron subphthalocyanine [(methanesulfonato)(subphthalocyaninato)boron, C25H15BN6O3S, (III)] was produced via sublimation and it is not a solvate, in contrast with two previously published structures of the same compound. Compound (III) crystallizes in the space group P21/n with Z = 2, and its structure is similar to that of the more common compound Cl‐BsubPc.  相似文献   

20.
Treatment of meso‐chlorosubporphyrin with potassium hydroxide in DMSO followed by aqueous work up and recrystallization gave a cyclic trimer consisting of meso‐hydroxysubporphyrin units linked between the central boron atoms and meso‐hydroxy groups. Solutions of this trimer are nonfluorescent, but become fluorescent when exposed to acid or base, since hydrolytic cleavage of the axial B? O bonds generates the meso‐hydroxysubporphyrin monomer or its oxyanion. Ring cleavage of the trimer was also effected by reaction with phenylmagnesium bromide to produce meso‐hydroxy‐B‐phenyl subporphyrin, which can be quantitatively oxidized with PbO2 to furnish a subporphyrin meso‐oxy radical as a remarkably stable species as a result of spin delocalization over almost the entire molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号