首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A series of β,γ‐unsaturated ketones were isomerized to their corresponding α,β‐unsaturated ketones by the introduction of DABCO in iPrOH at room temperature. The endo‐cyclic double bond (β,γ‐position) on ketone was rearranged to exo‐cyclic double bond (α,β‐position) under the reaction conditions.  相似文献   

2.
The enantioselective tandem reaction of β,γ‐unsaturated α‐ketoesters with β‐alkynyl ketones was realized by a bimetallic catalytic system of achiral AuΙΙΙ salt and chiral N,N′‐dioxide‐MgΙΙ complex. The cycloisomerization of β‐alkynyl ketone and asymmetric intermolecular [4+2] cycloaddition with β,γ‐unsaturated α‐ketoesters subsequently occurred, providing an efficient and straightforward access to chiral multifunctional 6,6‐spiroketals in up to 97 % yield, 94 % ee and >19/1 d.r. Besides, a catalytic cycle was proposed based on the results of control experiments.  相似文献   

3.
Highly enantioselective Diels–Alder (DA) and inverse‐electron‐demand hetero‐Diels–Alder (HDA) reactions of β,γ‐unsaturated α‐ketoesters with cyclopentadiene catalyzed by chiral N,N′‐dioxide–Cu(OTf)2 (Tf=triflate) complexes have been developed. Quantitative conversion of β,γ‐unsaturated α‐ketoesters and excellent diastereoselectivities (up to 99:1) and enantioselectivities (up to >99 % ee) were observed for a broad range of substrates. Both aromatic and aliphatic β,γ‐unsaturated α‐ketoesters were found to be suitable substrates for the reactions. Moreover, the chemoselectivity of the DA and HDA adducts were improved by regulating the reaction temperature. Good to high chemoselectivity (up to 94 %) of the DA adducts were obtained at room temperature, and moderate chemoselectivity (up to 65 %) of the HDA adducts were achieved at low temperature. The reaction also featured mild reaction conditions, a simple procedure, and remarkably low catalyst loading (0.1–1.5 mol %). A strong positive nonlinear effect was observed.  相似文献   

4.
An efficient chemoselective general procedure for the synthesis of γ‐substituted β,γ‐unsaturated α‐ketomethylthioesters from α,β‐unsaturated ketones has been achieved through an unprecedented PPh3?HBr‐DMSO mediated oxidative bromination and Kornblum oxidation sequence. The newly developed reagent system serves admirably for the synthesis of α‐bromoenals from enals. Furthermore, AuCl3‐catalyzed efficient access to 3(2H)‐furanones from the above intermediates under extremely mild conditions are described.  相似文献   

5.
β,γ‐Unsaturated aldehydes with all‐carbon quaternary or tertiary α‐centers were rapidly assembled from ketones through a unique synthetic operation consisting of 1) C1 homologation, 2) Lewis acid mediated epoxide–aldehyde isomerization, and 3) electrophilic trapping. The synthetic equivalence of a vinyl oxirane and a β,γ‐unsaturated aldehyde is the key concept of this previously undisclosed tactic. Mechanistic studies and labeling experiments suggest that an aldehyde enolate is a crucial intermediate. The homologating carbenoid formation plays a critical role in determining the chemoselectivity.  相似文献   

6.
Direct ruthenium‐catalyzed C? C coupling of alkynes and vicinal diols to form β,γ‐unsaturated ketones occurs with complete levels of regioselectivity and good to complete control over the alkene geometry. Exposure of the reaction products to substoichiometric quantities of p‐toluenesulfonic acid induces cyclodehydration to form tetrasubstituted furans. These alkyne‐diol hydrohydroxyalkylations contribute to a growing body of merged redox‐construction events that bypass the use of premetalated reagents and, hence, stoichiometric quantities of metallic by‐products.  相似文献   

7.
γ‐Ketophosphine chalcogenides, precursors for plethora of novel functionalized phosphine chalcogenides and phosphines, are synthesized by chemo‐ and regioselective addition of secondary phosphine chalcogenides to β,γ‐ethylenic ketones under catalyst‐ and solvent‐free conditions (80–100°C, 8–70 h) in excellent yields. The straightforward superbase‐catalyzed synthesis of starting β,γ‐ethylenic ketones from ketones and acetylenes insures the expedient access to the target γ‐ketophosphine chalcogenides.  相似文献   

8.
A highly diastereo‐ and enantioselective cyclopropanation of β,γ‐unsaturated α‐ketoesters with bromonitromethane has been successfully developed through a domino Michael‐addition/intramolecular‐alkylation strategy. Acceptable yields (up to 89 %) and enantioselectivities (up to 96 % ee) have been obtained.  相似文献   

9.
N,N′‐Dioxide/nickel(II) complexes have been developed to catalyze the inverse‐electron‐demand hetero‐Diels–Alder reaction of β,γ‐unsaturated α‐ketoesters with acyclic enecarbamates. After detailed screening of the reaction parameters, mild optimized reaction conditions were established, affording 3,4‐dihydro‐2H‐pyranamines in up to 99 % yield, 99 % ee and more than 95:5 d.r. The catalytic system was also efficient for β‐substituted acyclic enecarbamates, affording more challenging 2,3,4‐trisubstituted 3,4‐dihydro‐2H‐pyranamine with three contiguous stereogenic centers in excellent yields, diastereoselectivities, and enantioselectivities. The reaction could be scaled up to a gram scale with no deterioration of either enantioselectivity or yield. Based on these experiments and on previous reports, a possible transition state was proposed.  相似文献   

10.
Chiral complexes of BINOL‐based ligands with zirconium tert‐butoxide catalyze the Friedel–Crafts alkylation reaction of indoles with β‐trifluoromethyl‐α,β‐unsaturated ketones to give functionalized indoles with an asymmetric tertiary carbon center attached to a trifluoromethyl group. The reaction can be applied to a large number of substituted α‐trifluoromethyl enones and substituted indoles. The expected products were obtained with good yields and ees of up to 99 %.  相似文献   

11.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

12.
A highly regio‐ and enantioselective rhodium‐catalyzed 1,4‐addition of arylboronic acids to β,γ‐unsaturated α‐ketoamides using a simple new chiral sulfinylphosphine ligand is described. This transformation provides an attractive approach to construct chiral nonracemic γ,γ‐diarylsubstituted carbonyl compounds, as exemplified in the concise syntheses of sertraline and tetrahydroquinoline‐2‐carboxylamide.  相似文献   

13.
A simple and high‐yield method for the synthesis of several 1,5‐diaryl‐1,5‐dicarbonyl compounds has been established starting from TBAF‐mediated isomerization and dimerization reaction of β,γ‐unsaturated arylketones (allyl arylketones) with mono‐, di‐, and tri‐methoxy groups, which is derived from allylation of commercially available different benzaldehydes and followed by oxidation of the resulting secondary alcohols.  相似文献   

14.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

15.
An efficient cobalt‐catalyzed chemoselective reduction of β‐CF3‐α,β‐unsaturated ketones using benzylamine as hydrogen transfer agent involving intramolecular 1,5‐hydrogen transfer is reported. The reaction proceeded smoothly with a relatively wide range of substrates including those bearing aromatic heterocycles such as a furyl ring system in high yields (74–92 %). This provides an efficient method for the synthesis of β‐CF3 saturated ketones in one‐pot. This methodology was also applied to the selective C=C reduction of other enone substrates bearing no β‐CF3‐substituent, of which β‐substituted or β,β‐disubstituted enones are tolerated, giving the desired products in good yields (72–75 %). Mechanistic studies indicate that the reaction involves 1,5‐hydrogen transfer.  相似文献   

16.
β,γ‐Unsaturated ketones are an important class of organic molecules. Herein, copper catalysis has been developed for the synthesis of β‐γ‐unsaturated ketones through 1,2‐addition of α‐carbonyl iodides to alkynes. The reactions exhibit wide substrate scope and high functional group tolerance. The reaction products are versatile synthetic intermediates to complex small molecules. The method was applied for the formal synthesis of (±)‐trichostatin A, a histone deacetylase inhibitor.  相似文献   

17.
Reactions of β‐bromo‐β,γ‐unsaturated pyrroline nitroxide aldehyde ( 1 ) or nitrile ( 4 ) or their diamagnetic forms ( 5, 6 ) with 2‐aminothiophenol or 2‐mercaptobenzimidazole were evaluated. The reaction could be reproduced more easily with the application of O‐acetyl derivatives of nitroxides to generate 2‐substituted‐benzothiazole, pyrrolo[3,4‐b ]benzo[1,5]tiazepine scaffolds with 2‐aminothiophenol and benzimidazo[2,1‐b ]pyrrolo[3,4‐e ]‐[1,3]thiazine scaffold with 2‐mercaptobenzimidazole.  相似文献   

18.
(E)‐α,β‐Unsaturated pyrazoleamides undergo facile dienolization to furnish copper(I)‐(1Z,3Z)‐dienolates as the major in the presence of a copper(I)‐(R)‐DTBM‐SEGPHOS catalyst and Et3N, which react with aldimines to afford syn‐vinylogous products as the major diastereoisomers in high regio‐ and enantioselectivities. In some cases, the diastereoselectivity is low, possibly due to the low ratio of copper(I)‐(1Z,3Z)‐dienolates to copper(I)‐(1Z,3E)‐dienolates. (Z)‐Allylcopper(I) species is proposed as effective intermediates, which may form an equilibrium with copper(I)‐(1Z,3Z)‐dienolates. Interestingly, the present methodology is a nice complement to our previous report, in which (E)‐β,γ‐unsaturated pyrazoleamides were employed as the prenucleophiles in the copper(I)‐catalyzed asymmetric vinylogous Mannich‐Type reaction and anti‐vinylogous products were obtained. In the previous reaction, copper(I)‐ (1Z,3E)‐dienolates were generated through α‐deprotonation, which might form an equilibrium with (E)‐allylcopper(I) species. Therefore, it is realized in the presence of a copper(I) catalyst that (E)‐α,β‐unsaturated pyrazoleamides lead to syn‐products and (E)‐β,γ‐unsaturated pyrazoleamides lead to anti‐products. Finally, by use of (E)‐β,γ‐unsaturated pyrazoleamide, (E)‐α,β‐unsaturated pyrazoleamide, (R)‐DTBM‐SEGPHOS, and (S)‐DTBM‐SEGPHOS, the stereodivergent synthesis of all four stereoisomers is successfully carried out. Then by following a three‐step reaction sequence, all four stereoisomers of N‐Boc‐2‐Ph‐3‐Me‐piperidine are synthesized in good yields, which potentially serve as common structure units in pharmaceutically active compounds.  相似文献   

19.
An enantioselective rhodium‐catalyzed allylic alkylation of β,γ‐unsaturated α‐amino nitriles is described. This protocol provides a novel approach for the construction of β‐stereogenic carbonyl derivatives via the catalytic asymmetric alkylation of a homoenolate equivalent. The particularly challenging nature of this transformation is highlighted by the fact that three modes of selectivity must be manipulated, namely regio‐ and enantioselectivity, in addition to geometrical control. The γ‐stereogenic cyanoenamine products can be readily hydrolyzed in situ to afford the β‐substituted carboxylic acids, which in turn provide expedient access to a number of related carbonyl derivatives. Additionally, control experiments indicate that the chiral rhodium‐allyl intermediate facilitates the selective formation of the E‐cyanoenamine products, which is critical since the Z‐isomer affords significantly lower enantiocontrol.  相似文献   

20.
The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc)2 provided ketenimines through β‐hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π‐allyl Pd complex proceeded via an unusual η1‐allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ‐unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5‐disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号