首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a lipid‐based strategy to visualize Golgi structure and dynamics at super‐resolution in live cells. The method is based on two novel reagents: a trans‐cyclooctene‐containing ceramide lipid (Cer‐TCO) and a highly reactive, tetrazine‐tagged near‐IR dye (SiR‐Tz). These reagents assemble via an extremely rapid “tetrazine‐click” reaction into Cer‐SiR, a highly photostable “vital dye” that enables prolonged live‐cell imaging of the Golgi apparatus by 3D confocal and STED microscopy. Cer‐SiR is nontoxic at concentrations as high as 2 μM and does not perturb the mobility of Golgi‐resident enzymes or the traffic of cargo from the endoplasmic reticulum through the Golgi and to the plasma membrane.  相似文献   

2.
Visualization of the nanoscale organization of cell membranes remains challenging because of the lack of appropriate fluorescent probes. Herein, we introduce a new design concept for super‐resolution microscopy probes that combines specific membrane targeting, on/off switching, and environment sensing functions. A functionalization strategy for solvatochromic dye Nile Red that improves its photostability is presented. The dye is grafted to a newly developed membrane‐targeting moiety composed of a sulfonate group and an alkyl chain of varied lengths. While the long‐chain probe with strong membrane binding, NR12A, is suitable for conventional microscopy, the short‐chain probe NR4A, owing to the reversible binding, enables first nanoscale cartography of the lipid order exclusively at the surface of live cells. The latter probe reveals the presence of nanoscopic protrusions and invaginations of lower lipid order in plasma membranes, suggesting a subtle connection between membrane morphology and lipid organization.  相似文献   

3.
Si‐rhodamine (SiR) is an ideal fluorophore because it possesses bright emission in the NIR region and can be implemented flexibly in living cells. Currently, several promising approaches for synthesizing SiR are being developed. However, challenges remain in the construction of SiR containing functional groups for bioimaging application. Herein, we introduce a general and simple approach by a condensation reaction of diarylsilylether and arylaldehyde in o‐dichlorobenzene to synthesize a series of SiRs bearing various functional substituents. These SiRs have moderate to high quantum efficiency, tolerance to photobleaching, and high water solubility as well as NIR emitting, and their NIR fluorescence properties can be controlled through the photoinduced electron transfer (PET) mechanism. Fluorescence OFF‐ON switching effect is observed for SiR 9 in the presence of acid, which is rationalized by DFT/TDDFT calculations. Moreover, reversible stimuli response toward temperature is achieved. Since positive charge enables mitochondrial targeting ability and chloromethyl unit can covalently immobilize the dyes onto the mitochondrial via click reaction between the benzyl choride and protein sulfhydryls, SiR 8 is identified as a valuable fluorescent marker to visualize the morphology and monitor the temperature change of mitochondria with high photostability.  相似文献   

4.
Using a combination of metabolically labeled glycans, a bioorthogonal copper(I)‐catalyzed azide–alkyne cycloaddition, and the controlled bleaching of fluorescent probes conjugated to azide‐ or alkyne‐tagged glycans, a sufficiently low spatial density of dye‐labeled glycans was achieved, enabling dynamic single‐molecule tracking and super‐resolution imaging of N‐linked sialic acids and O‐linked N‐acetyl galactosamine (GalNAc) on the membrane of live cells. Analysis of the trajectories of these dye‐labeled glycans in mammary cancer cells revealed constrained diffusion of both N‐ and O‐linked glycans, which was interpreted as reflecting the mobility of the glycan rather than to be caused by transient immobilization owing to spatial inhomogeneities on the plasma membrane. Stochastic optical reconstruction microscopy (STORM) imaging revealed the structure of dynamic membrane nanotubes.  相似文献   

5.
Real‐time imaging of cell‐surface‐associated proteolytic enzymes is critical to better understand their performances in both physiological and pathological processes. However, most current approaches are limited by their complexity and poor membrane‐anchoring properties. Herein, we have designed and synthesized a unique small‐molecule fluorescent probe, which combines the principles of passive exogenous membrane insertion and Förster resonance energy transfer (FRET) to image cell‐surface‐localized furin‐like convertase activities. The membrane‐associated furin‐like enzymatic cleavage of the peptide probe leads to an increased fluorescence intensity which was mainly localized on the plasma membrane of the furin‐expressed cells. This small‐molecule fluorescent probe may serve as a unique and reliable reporter for real‐time visualization of endogenous cell‐surfaceassociated proteolytic furin‐like enzyme functions in live cells and tissues using one‐photon and two‐photon microscopy.  相似文献   

6.
Fluorescent sensors are powerful tools for visualizing cellular molecular dynamics. We present a high‐throughput screening system, designated hybrid‐type fluorescence indicator development (HyFInD), to identify optimal position‐specific fluorophore labeling in hybrid‐type sensors consisting of combinations of ligand‐binding protein mutants with small molecular fluorophores. We screened sensors for glutamate among hybrid molecules obtained by the reaction of four cysteine‐reactive fluorescence probes with a set of cysteine‐scanning mutants of the 274 amino acid S1S2 domain of AMPA‐type glutamate receptor GluA2 subunit. HyFInD identified a glutamate‐responsive probe (enhanced glutamate optical sensor: eEOS) with a dynamic range >2400 %, good photostability, and high selectivity. When eEOS was specifically tethered to neuronal surfaces, it reliably visualized the spatiotemporal dynamics of glutamate release at single synapses, revealing synapse‐to‐synapse heterogeneity of short‐term plasticity.  相似文献   

7.
Fluorescence imaging in the near‐infrared (NIR) region (650–900 nm) is useful for bioimaging because background autofluorescence is low and tissue penetration is high in this range. In addition, NIR fluorescence is useful as a complementary color window to green and red for multicolor imaging. Here, we compared the photoinduced electron transfer (PeT)‐mediated fluorescence quenching of silicon‐ and phosphorus‐substituted rhodamines (SiRs and PRs) in order to guide the development of improved far‐red to NIR fluorescent dyes. The results of density functional theory calculations and photophysical evaluation of a series of newly synthesized PRs confirmed that the fluorescence of PRs was more susceptible than that of SiRs to quenching via PeT. Based on this, we designed and synthesized a NIR fluorescence probe for Ca2+, CaPR‐1 , and its membrane‐permeable acetoxymethyl derivative, CaPR‐1 AM , which is distributed to the cytosol, in marked contrast to our previously reported Ca2+ far‐red to NIR fluorescence probe based on the SiR scaffold, CaSiR‐1 AM , which is mainly localized in lysosomes as well as cytosol in living cells. CaPR‐1 showed longer‐wavelength absorption and emission (up to 712 nm) than CaSiR‐1 . The new probe was able to image Ca2+ at dendrites and spines in brain slices, and should be a useful tool in neuroscience research.  相似文献   

8.
The chemical biology of reactive sulfur species, including hydropolysulfides, has been a subject undergoing intense study in recent years, but further understanding of their “intact” function in living cells has been limited owing to a lack of appropriate analytical tools. In order to overcome this limitation, we developed a new type of fluorescent probe that reversibly and selectively reacts to hydropolysulfides. The probe enables live‐cell visualization and quantification of endogenous hydropolysulfides without interference from intrinsic thiol species such as glutathione. Additionally, real‐time reversible monitoring of oxidative‐stress‐induced fluctuation of intrinsic hydropolysulfides has been achieved with a temporal resolution on the order of seconds, a result which has not yet been realized using conventional methods. These results reveal the probe's versatility as a new fluorescence imaging tool to understand the function of intracellular hydropolysulfides.  相似文献   

9.
Subcellular organelle‐specific reagents for simultaneous tumor targeting, imaging, and treatment are of enormous interest in cancer therapy. Herein, we present a mitochondria‐targeting probe (AIE‐mito‐TPP) by conjugating a triphenylphosphine (TPP) with a fluorogen which can undergo aggregation‐induced emission (AIE). Owing to the more negative mitochondrial membrane potential of cancer cells than normal cells, the AIE‐mito‐TPP probe can selectively accumulate in cancer‐cell mitochondria and light up its fluorescence. More importantly, the probe exhibits selective cytotoxicity for studied cancer cells over normal cells. The high potency of AIE‐mito‐TPP correlates with its strong ability to aggregate in mitochondria, which can efficiently decrease the mitochondria membrane potential and increase the level of intracellular reactive oxygen species (ROS) in cancer cells. The mitochondrial light‐up probe provides a unique strategy for potential image‐guided therapy of cancer cells.  相似文献   

10.
《中国化学快报》2022,33(12):5042-5046
The need for temporal resolution and long-term stability in super-resolution fluorescence imaging has motivated research to improve the photostability of fluorescent probes. Due to the inevitable photobleaching of fluorophores, it is difficult to obtain long-term super-resolution imaging regardless of the self-healing strategy of introducing peroxide scavengers or the strategy of fluorophore structure modification to suppress TICT formation. The buffered fluorogenic probe uses the intact probes in the buffer pool to continuously replace the photobleached ones in the target, which greatly improves the photostability and enables stable dynamic super-resolution imaging for a long time. But the buffering capacity comes at the expense of reducing the number of fluorescent probes in targets, resulting in low staining fluorescence intensity. In this paper, we selected BODIPY 493, a lipid droplet probe with high fluorescence brightness, to explore the dynamic process of lipid droplet staining of this probe in cells. We found that BODIPY 493 only needs very low laser power for lipid droplet imaging due to the high molecular accumulation in lipid droplets and the high brightness, and the spatiotemporal resolution is greatly improved. More importantly, we found that BODIPY 493 also has a certain buffering capacity, which enables BODIPY 493 to be used for super-resolution imaging of lipid droplet dynamics. This work reminds researchers to coordinate the buffering capacity and brightness of fluorogenic probes.  相似文献   

11.
The visualization of temporal and spatial changes in the intracellular environment has great significance for chemistry and bioscience research. Mass spectrometry imaging (MSI) plays an important role because of its unique advantages, such as being label‐free and high throughput, yet it is a challenge for laser‐based techniques due to limited lateral resolution. Here, we develop a simple, reliable, and economic nanoscale MSI approach by introducing desorption laser with a micro‐lensed fiber. Using this integrated platform, we achieved 300 nm resolution MSI and successfully visualized the distribution of various small‐molecule drugs in subcellular locations. Exhaustive dynamic processes of anticancer drugs, including releasing from nanoparticle carriers entering nucleus of cells, can be readily acquired on an organelle scale. Considering the simplicity and universality of this nanoscale desorption device, it could be easily adapted to most of laser‐based mass spectrometry applications.  相似文献   

12.
The LacZ gene, which encodes Escherichia coli β‐galactosidase, is widely used as a marker for cells with targeted gene expression or disruption. However, it has been difficult to detect lacZ‐positive cells in living organisms or tissues at single‐cell resolution, limiting the utility of existing lacZ reporters. Herein we present a newly developed fluorogenic β‐galactosidase substrate suitable for labeling live cells in culture, as well as in living tissues. This precisely functionalized fluorescent probe exhibited dramatic activation of fluorescence upon reaction with the enzyme, remained inside cells by anchoring itself to intracellular proteins, and provided single‐cell resolution. Neurons labeled with this probe preserved spontaneous firing, which was enhanced by application of ligands of receptors expressed in the cells, suggesting that this probe would be applicable to investigate functions of targeted cells in living tissues and organisms.  相似文献   

13.
Studying the dynamic interaction between host cells and pathogen is vital but remains technically challenging. We describe herein a time‐resolved chemical proteomics strategy enabling host and pathogen temporal interaction profiling (HAPTIP) for tracking the entry of a pathogen into the host cell. A novel multifunctional chemical proteomics probe was introduced to label living bacteria followed by in vivo crosslinking of bacteria proteins to their interacting host‐cell proteins at different time points initiated by UV for label‐free quantitative proteomics analysis. We observed over 400 specific interacting proteins crosslinked with the probe during the formation of Salmonella‐containing vacuole (SCV). This novel chemical proteomics approach provides a temporal interaction profile of host and pathogen in high throughput and would facilitate better understanding of the infection process at the molecular level.  相似文献   

14.
A cationic fluorescent nanogel thermometer based on thermo‐responsive N‐isopropylacrylamide and environment‐sensitive benzothiadiazole was developed with a new azo compound bearing imidazolium rings as the first cationic radical initiator. This cationic fluorescent nanogel thermometer showed an excellent ability to enter live mammalian cells in a short incubation period (10 min), a high sensitivity to temperature variations in live cells (temperature resolution of 0.02–0.84 °C in the range 20–40 °C), and remarkable non‐cytotoxicity, which permitted ordinary cell proliferation and even differentiation of primary cultured cells.  相似文献   

15.
Recent developments in fluorescence microscopy call for novel small‐molecule‐based labels with multiple functionalities to satisfy different experimental requirements. A current limitation in the advancement of live‐cell single‐molecule localization microscopy is the high excitation power required to induce blinking. This is in marked contrast to the minimal phototoxicity required in live‐cell experiments. At the same time, quality of super‐resolution imaging depends on high label specificity, making removal of excess dye essential. Approaching both hurdles, we present the design and synthesis of a small‐molecule label comprising both fluorogenic and self‐blinking features. Bioorthogonal click chemistry ensures fast and highly selective attachment onto a variety of biomolecular targets. Along with spectroscopic characterization, we demonstrate that the probe improves quality and conditions for regular and single‐molecule localization microscopy on live‐cell samples.  相似文献   

16.
Photoactivatable fluorophores are useful tools in live‐cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle‐specific live‐cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water‐soluble, non‐cytotoxic, cell‐permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre‐activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single‐cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single‐ or multi‐cell labeling experiments.  相似文献   

17.
《化学:亚洲杂志》2017,12(18):2501-2509
A versatile fluorescent probe, PITE, based on alkyl‐substituted pyridoindole (PI) and tetraphenylethylene (TE), which exhibits facile pH‐induced fluorescence switching in solution, as nanoparticles, and in the solid state, is presented. Strong fluorescence in the solid state, as well as in solution and the aggregated state, allow sensing of toxic acid vapors. Fluorescence “off–on” switching of PITE through exposure to trifluoroacetic acid and triethylamine vapor is visualized by the naked eye. A unified picture of the switchable fluorescence of PITE is obtained by comprehensive spectroscopic investigations coupled with quantum mechanical calculations. Strong fluorescence, a large Stokes shift, high photostability, and biocompatibility of PITE make it a viable probe for subcellular imaging. Extensive fluorescence microscopic studies by employing organisms including lower and higher eukaryotes reveal specific localization of PITE to lipid droplets (LDs). LDs are dynamic subcellular organelles linked to various physiological processes and human diseases. Hence, the specific detection of LDs in diverse organisms is important to biomedical research and healthcare. Isolation of LDs and subsequent colocalization studies ascertain selective targeting of LDs by the easily affordable, lipophilic bioprobe, PITE. Thus, PITE is a promising multifunctional probe for chemosensing and the selective tracking of LDs.  相似文献   

18.
19.
Herein, we report the synthesis of two phenylaza‐[18]crown‐6 lariat ethers with a coumarin fluorophore ( 1 and 2 ) and we reveal that compound 1 is an excellent probe for K+ ions under simulated physiological conditions. The presence of a 2‐methoxyethoxy lariat group at the ortho position of the anilino moiety is crucial to the substantially increased stability of compounds 1 and 2 over their lariat‐free phenylaza‐[18]crown‐6 ether analogues. Probe 1 shows a high K+/Na+ selectivity and a 2.5‐fold fluorescence enhancement was observed in the presence of 100 mM K+ ions. A fluorescent membrane sensor, which was prepared by incorporating probe 1 into a hydrogel, showed a fully reversible response, a response time of 150 s, and a signal change of 7.8 % per 1 mM K+ within the range 1–10 mM K+. The membrane was easily fabricated (only a single sensing layer on a solid polyester support), yet no leaching was observed. Moreover, compound 1 rapidly permeated into cells, was cytocompatible, and was suitable for the fluorescent imaging of K+ ions on both the extracellular and intracellular levels.  相似文献   

20.
Spatial and temporal control over chemical and biological processes plays a key role in life and material sciences. Here we synthesized a two‐photon‐activatable glutathione (GSH) to trigger the interaction with glutathione S‐transferase (GST) by light at superior spatiotemporal resolution. The compound shows fast and well‐confined photoconversion into the bioactive GSH, which is free to interact with GST‐tagged proteins. The GSH/GST interaction can be phototriggered, changing its affinity over several orders of magnitude into the nanomolar range. Multiplexed three‐dimensional (3D) protein networks are simultaneously generated in situ through two‐photon fs‐pulsed laser‐scanning excitation. The two‐photon activation facilitates the three‐dimensional assembly of protein structures in real time at hitherto unseen resolution in time and space, thus opening up new applications far beyond the presented examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号