首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Study of the kinetics of intramolecular aryl ether C?O bond cleavage by Ni was facilitated by access to a family of metal complexes supported by diphosphines with pendant aryl‐methyl ethers. The nature of the aryl substituents was found to have little effect on the rate of cleavage. In contrast, soluble Lewis acidic additives accelerate the aryl ether cleavage dramatically. The effect of AlMe 3 was studied in detail, and showed an increase in rate by several orders of magnitude. Low temperature NMR spectroscopy studies demonstrate quantitative coordination of ether to Al. From the Lewis acid‐bound precursor, the activation parameters for ether cleavage are significantly lower. These findings provide a mechanistic basis for milder catalyst design for the activation of strong bonds.  相似文献   

2.
Palladium on carbon catalyzes C?O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by alcohols (R?OH) in H2. The aromatic C?O bond is cleaved by reductive solvolysis, which is initiated by Pd‐catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with alcohols to form a ketal, which generates 1‐cyclohexenyl?O?R by eliminating phenol or an alkanol. Subsequent hydrogenation leads to cyclohexyl?O?R.  相似文献   

3.
A mild visible-light-induced Pd-catalyzed intramolecular C−H arylation of amides is reported. The method operates by cleavage of a C(sp2)−O bond, leading to hybrid aryl Pd-radical intermediates. The following 1,5-hydrogen atom translocation, intramolecular cyclization, and rearomatization steps lead to valuable oxindole and isoindoline-1-one motifs. Notably, this method provides access to products with readily enolizable functional groups that are incompatible with traditional Pd-catalyzed conditions.  相似文献   

4.
A novel approach for the umpolung α‐arylation of amides is presented. By the nucleophilic phenylation of O‐silyl N,O‐ketene acetals, generated in situ from N‐alkoxy amides, a phenyl group can be introduced onto the α‐carbon atom of amides through N−O bond cleavage in a two‐step, one‐pot process. The asymmetric synthesis of α‐aryl amides through the diastereoselective arylation of a chiral N,O‐ketene acetal is also described.  相似文献   

5.
A Ni‐catalyzed stannylation of aryl esters with air‐ and moisture‐insensitive silylstannyl reagents via C −O cleavage is described. This protocol is characterized by its wide scope, including challenging combinations, thus enabling access to versatile building blocks and orthogonal C−heteroatom bond formations.  相似文献   

6.
A nickel-catalyzed thiolation of aryl nitriles has been developed to access functionalized aryl thioethers. The ligand dcype (1,2-bis(dicyclohexylphosphino)ethane) as well as the base KOtBu (potassium tert-butoxide) are essential to achieve this transformation. This scalable and practical process involves both a C−C bond activation and a C−S bond formation. Furthermore, this reaction shows a high functional-group tolerance and enables the late-stage functionalization of important molecules.  相似文献   

7.
Transition-metal-free regioselecitive C−H arylation of 2-naphthols with diaryliodonium salts has been developed. The reaction proceeds under very simple experimental conditions and affords a range of products with various substitution patterns. The method allows for the incorporation of electron-deficient aryls, which complements well currently existing metal-free aryl–aryl cross-couplings of phenols that have been so far restricted to the introduction of electron-rich aryl moieties. The mechanism of the reaction was studied by means of DFT calculations, demonstrating that the C−C bond formation occurs via a dearomatization of 2-naphthol substrate, followed by a subsequent rearomatization by tautomerization. The computations show that the use of a low polarity solvent and an insoluble inorganic base is key to securing the high selectivity of the C−C coupling over a competing C−O arylation pathway, by preventing the incipient deprotonation of 2-naphthol.  相似文献   

8.
A novel metal‐free allylic C−C σ‐bond cleavage of simple olefins to give valuable cinnamyl aldehydes is reported. 1,2‐Aryl or alkyl migration through allylic C−C bond cleavage occurs in this transformation, which is assisted by an alkyl azide reagent. This method enables O‐atom incorporation into simple unfunctionalized olefins to construct cinnamyl aldehydes. The reaction features simple hydrocarbon substrates, metal‐free conditions, and high regio‐ and stereoselectivity.  相似文献   

9.
Various aryl‐, alkenyl‐, and/or alkyllithium species reacted smoothly with aryl and/or benzyl ethers with cleavage of the inert C?O bond to afford cross‐coupled products, catalyzed by commercially available [Ni(cod)2] (cod=1,5‐cyclooctadiene) catalysts with N‐heterocyclic carbene (NHC) ligands. Furthermore, the coupling reaction between the aryllithium compounds and aryl ammonium salts proceeded under mild conditions with C?N bond cleavage in the presence of a [Pd(PPh3)2Cl2] catalyst. These methods enable selective sequential functionalizations of arenes having both C?N and C?O bonds in one pot.  相似文献   

10.
Despite recent progress in the catalytic transformation of inert phenol derivatives as alternatives to aryl halides and triflates, attempts at the cross‐coupling of inert phenol derivatives with the C−H bonds of arenes have met with limited success. Herein, we report the rhodium‐catalyzed cross‐coupling of aryl carbamates with arenes bearing a convertible directing group. The key to success is the use of an in situ generated rhodium bis(N‐heterocyclic carbene) species as the catalyst, which can promote activation of the inert C(sp2)−O bond in aryl carbamates.  相似文献   

11.
An iridium/bipyridine‐catalyzed ortho ‐selective C−H borylation of aryl sulfides was developed. High ortho ‐selectivity was achieved by a Lewis acid–base interaction between a boryl group of the ligand and a sulfur atom of the substrate. This is the first example of a catalytic and regioselective C−H transformation controlled by a Lewis acid–base interaction between a ligand and a substrate. The C−H borylation reaction could be conducted on a gram scale, and with a bioactive molecule as a substrate, demonstrating its applicability to late‐stage regioselective C−H borylation. A bioactive molecule was synthesized from an ortho ‐borylated product by converting the boryl and methylthio groups of the product.  相似文献   

12.
Hypervalent‐iodine‐mediated oxidative coupling of the two aryl groups in either 2‐acylamino‐N‐phenyl‐benzamides or 2‐hydroxy‐N‐phenylbenzamides, with concomitant insertion of the ortho‐substituted N or O atom into the tether, has been described for the first time. This unusual metal‐free rearrangement reaction involves an oxidative C(sp2)? C(sp2) aryl–aryl bond formation, cleavage of a C(sp2)? C(O) bond, and a lactamization/lactonization. Furthermore, unsymmetrical diaryl compounds can be easily obtained by removing the tether within the cyclized product.  相似文献   

13.
The coupling of aromatic electrophiles (aryl halides, aryl ethers, aryl acids, aryl nitriles etc.) with nucleophiles is a core methodology for the synthesis of aryl compounds. Transformations of aryl ketones in an analogous manner via carbon–carbon bond activation could greatly expand the toolbox for the synthesis of aryl compounds due to the abundance of aryl ketones. An exploratory study of this approach is typically based on carbon–carbon cleavage triggered by ring‐strain release and chelation assistance, and the products are also limited to a specific structural motif. Here we report a ligand‐promoted β‐carbon elimination strategy to activate the carbon–carbon bonds, which results in a range of transformations of aryl ketones, leading to useful aryl borates, and also to biaryls, aryl nitriles, and aryl alkenes. The use of a pyridine‐oxazoline ligand is crucial for this catalytic transformation. A gram‐scale borylation reaction of an aryl ketone via a simple one‐pot operation is reported. The potential utility of this strategy is also demonstrated by the late‐stage diversification of drug molecules probenecid, adapalene, and desoxyestrone, the fragrance tonalid as well as the natural product apocynin.  相似文献   

14.
An efficient method for photocatalytic perfluoroalkylation of vinyl‐substituted all‐carbon quaternary centers involving 1,2‐aryl migration has been developed. The rearrangement reactions use fac‐Ir(ppy)3, visible light and commercially available fluoroalkyl halides and can generate valuable multisubstituted perfluoroalkylated compounds in a single step that would be challenging to prepare by other methods. Mechanistically, the photoinduced alkyl radical addition to an alkene leads to the migration of a vicinal aryl substituent from its adjacent all‐carbon quaternary center with the concomitant generation of a C‐radical bearing two electron‐withdrawing groups that is further reduced by a hydrogen donor to complete the domino sequence.  相似文献   

15.
A versatile π‐extension reaction was developed based on the three‐component cross‐coupling of aryl halides, 2‐haloarylcarboxylic acids, and norbornadiene. The transformation is driven by the direction and subsequent decarboxylation of the carboxyl group, while norbornadiene serves as an ortho ‐C−H activator and ethylene synthon via a retro‐Diels–Alder reaction. Comprehensive DFT calculations were performed to account for the catalytic intermediates.  相似文献   

16.
By using computational chemistry it has been shown that the adsorption of ether molecules on Si(001) under ultrahigh vacuum conditions can be understood with classical concepts of organic chemistry. Detailed analysis of the two‐step reaction mechanism—1) formation of a dative bond between the ether oxygen atom and a Lewis acidic surface atom and 2) nucleophilic attack of a nearby Lewis basic surface atom—shows that it mirrors acid‐catalyzed ether cleavage in solution. The O−Si dative bond is the strongest of its kind, and the reactivity in step 2 defies the Bell–Evans–Polanyi principle. Electron rearrangement during C−O bond cleavage has been visualized with a newly developed method for analyzing bonding, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular SN2 reactions. Our findings illustrate how surface science and molecular chemistry can mutually benefit from each other and unexpected insight can be gained.  相似文献   

17.
Organosilicon compounds have been extensively utilized both in industry and academia. Studies on the syntheses of diverse organosilanes is highly appealing. Through-space metal/hydrogen shifts allow functionalization of C−H bonds at a remote site, which are otherwise difficult to achieve. However, until now, an aryl to alkyl 1,5-palladium migration process seems to have not been presented. Reported herein is the remote olefination, arylation, and borylation of a methyl group on silicon to access diverse vinyl-, benzyl-, and borylsilanes, constituting a unique C(sp3)−H transformation based on a 1,5-palladium migration process.  相似文献   

18.
《化学:亚洲杂志》2017,12(20):2675-2679
A simple and practical NaI‐catalyzed direct C−H sulfenylation of arenes has been developed under air. In this reaction, aryl sulfides were obtained in moderate to excellent yields with high regioselectivity from readily available aromatic compounds and aryl/alkyl thiols, even on gram scale. To demonstrate the practicability of this reaction, two bioactive compound skeletons were synthesized in good yields. This method can also be used to late‐stage modification of curcumin.  相似文献   

19.
A nickel‐catalyzed asymmetric reductive Heck reaction of aryl chlorides has been developed that affords substituted indolines with high enantioselectivity. Manganese powder is used as the terminal reductant with water as a proton source. Mechanistically, it is distinct from the palladium‐catalyzed process in that the nickel–carbon bond is converted into a C−H bond to release the product through protonation instead of hydride donation followed by C−H reductive elimination on Pd.  相似文献   

20.
A manganese‐catalyzed regio‐ and stereoselective hydroarylation of allenes is reported. The C−H functionalization method provides access to various alkenylated indoles in excellent yields. Moreover, a hydroarylation/cyclization cascade involving an unexpected C−N bond cleavage and aryl shift has been developed, which provides a new synthetic approach to substituted pyrroloindolones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号