首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity of Li[Sc(COT′′)2] ( 1 ; COT′′=1,4-bis(trimethylsilyl)cyclooctatetraenyl) towards CoCl2 is considerably different from that of related lanthanide triple-decker sandwich complexes. In addition to the expected triple-decker complex Sc2(COT′′)3 ( 2 ), the complex Sc2{μ-BTHP}(COT′′)2 ( 3 ) is formed, which comprises the novel BTHP2− ligand (BTHP2−=bis(3,5-bis(trimethylsilyl)-1,3a,6,6a-tetrahydropentalene-1-yl)diide or bis(2,7-bis(trimethylsilyl)bicyclo[3.3.0]octa-2,7-dien-4-yl)diide, C16H10(SiMe3)42−). The formation of 3 is likely facilitated by the fact that scandium prefers η83 coordination rather than highly symmetric η88 coordination, and the η3-coordinated COT′′ ligand in 1 is activated owing to a loss of aromaticity. Acid hydrolysis of 3 leads to air-stable H2BTHP ( 4 ).  相似文献   

2.
The blood‐red plutonocene complex Pu(1,3‐COT′′)(1,4‐COT′′) ( 4 ; COT′′=η8‐bis(trimethylsilyl)cyclooctatetraenyl) has been synthesized by oxidation of the anionic sandwich complex Li[Pu(1,4‐COT′′)2] ( 3 ) with anhydrous cobalt(II) chloride. The first crystal structure determination of an organoplutonium(IV) complex revealed an asymmetric sandwich structure for 4 where one COT′′ ring is 1,3‐substituted while the other retains the original 1,4‐substitution pattern. The electronic structure of 4 has been elucidated by a computational study, revealing a probable cause for the unexpected silyl group migration.  相似文献   

3.
The new zirconium bent metallocenes (COT)Zr(CptBu2)Cl ( 1 ) and (COT)Zr(Cp′′)Cl ( 2 ) were synthesized in a straightforward manner and in high yields ( 1 : 91 %, 2 : 86 %) by treatment of in situ‐prepared (COT)ZrCl2(THF) with 1 equiv. of K(CptBu2) or K(Cp′′), respectively (COT = η8‐cyclooctatetraenyl; CptBu2 = η5‐1,3‐di‐tert‐butylcyclopentadienyl; Cp′′ = η5‐1,3‐bis(trimethylsilyl)cyclopentadienyl). Subsequent reaction of 1 with 1 equiv. of phenyllithium afforded the σ‐phenyl derivative (CptBu2)Zr(COT)Ph ( 3 ) as orange crystals in 83 % isolated yield. All three new compounds were structurally characterized through single‐crystal X‐ray diffraction.  相似文献   

4.
Only a few cyclooctatetraene dianion (COT) π‐complexes of lanthanides have been crystallographically characterized. This first single‐crystal X‐ray diffraction characterization of a scandium(III) COT chloride complex, namely di‐μ‐chlorido‐bis[(η8‐cyclooctatetraene)(tetrahydrofuran‐κO )scandium(III)], [Sc2(C8H8)2Cl2(C4H8O)2] or [Sc(COT)Cl(THF)]2 (THF is tetrahydrofuran), (1), reveals a dimeric molecular structure with symmetric chloride bridges [average Sc—Cl = 2.5972 (7) Å] and a η8‐bound COT ligand. The COT ring is planar, with an average C—C bond length of 1.399 (3) Å. The Sc—C bond lengths range from 2.417 (2) to 2.438 (2) Å [average 2.427 (2) Å]. Direct comparison of (1) with the known lanthanide (Ln) analogues (La, Ce, Pr, Nd, and Sm) illustrates the effect of metal‐ion (M ) size on molecular structure. Overall, the M —Cl, M —O, and M —C bond lengths in (1) are the shortest in the series. In addition, only one THF molecule completes the coordination environment of the small ScIII ion, in contrast to the previously reported dinuclear Ln–COT–Cl complexes, which all have two bound THF molecules per metal atom.  相似文献   

5.
We report the synthesis and characterization of a novel 4‐(dimethylamino)pyridinium‐substituted η3‐cycloheptatrienide–Pd complex which is free of halide ligands. Diacetonitrile{η3‐[4‐(dimethylamino)pyridinium‐1‐yl]cycloheptatrienido}palladium(II) bis(tetrafluoroborate), [Pd(C2H3N)2(C14H16N2)](BF4)2, was prepared by the exchange of two bromide ligands for noncoordinating anions, which results in the empty coordination sites being occupied by acetonitrile ligands. As described previously, exchange of only one bromide leads to a dimeric complex, di‐μ‐bromido‐bis({η3‐[4‐(dimethylamino)pyridinium‐1‐yl]cycloheptatrienido}palladium(II)) bis(tetrafluoroborate) acetonitrile disolvate, [Pd2Br2(C14H16N2)2](BF4)2·2CH3CN, with bridging bromide ligands, and the crystal structure of this compound is also reported here. The structures of the cycloheptatrienide ligands of both complexes are analogous to the dibromide derivative, showing the allyl bond in the β‐position with respect to the pyridinium substituent. This indicates that, unlike a previous interpretation, the main reason for the formation of the β‐isomer cannot be internal hydrogen bonding between the cationic substituents and bromide ligands.  相似文献   

6.
In the coordination chemistry of palladium, dimers bridged via halides are a common motif. Higher oligomers, however, are still rare. We report the structure of an alternating eight‐membered [Pd4Br4]4− ring framed by cycloheptatrienide ligands, which was obtained by cocrystallization of dimers and tetramers of the complex salt bromido{η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II) tetrafluoroborate, namely bis[di‐μ‐bromido‐bis({η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II))] cyclo‐tetra‐μ‐bromido‐tetrakis({η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II)) octakis(tetrafluoroborate) dichloromethane octasolvate, [Pd4Br4(C22H26N2)4][Pd2Br2(C22H26N2)2]2(BF4)8·8CH2Cl2. These dimers and tetramers form a highly dynamic equilibrium in solution which was studied by low‐temperature NMR spectroscopy. In the light of the presented results, tetrameric PdII species can be assumed to co‐exist as a second species in many cases where by current knowledge only a dimeric compound would be expected.  相似文献   

7.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

8.
The two title crystalline compounds, viz.meso‐bis{η5‐1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienyl}iron(II), [Fe(C12H20NSi)2], (II), and meso‐bis{η5‐1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienyl}cobalt(II), [Co(C12H20NSi)2], (III), were obtained by the reaction of lithium 1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienide with FeCl2 and CoCl2, respectively. For (II), the trimethylsilyl‐ and dimethylaminoethenyl‐substituted cyclopentadienyl (Cp) rings present a nearly eclipsed conformation, and the two pairs of trimethylsilyl and dimethylaminoethenyl substituents on the Cp rings are arranged in an interlocked fashion. In the case of (III), the same substituted Cp rings are perfectly staggered leading to a crystallographically centrosymmetric molecular structure, and the two trimethylsilyl and two dimethylaminoethenyl substituents are oriented in opposite directions, respectively, with the trimethylsilyl group of one Cp ring and the dimethylaminoethenyl group of the other Cp ring arranged more closely than in (II).  相似文献   

9.
The bis‐phosphonio‐benzo[c]phospholide tetraphenylborate 4 [BPh4] reacts with CpCo(C2H4)2 to form a chelate complex [Co(η5–Cp)(κ2P2(P=C) –4 )][BPh4] ( 6 [BPh4]) which was characterized by means of spectroscopic techniques and a single crystal X‐ray diffraction study. The observed η2(π)‐coordination of the benzophospholide moiety in the cation 6 is highly unusual for aromatic phosphorus heterocycles. The structural data suggest a pronounced coordination‐induced localization of π‐electrons in the condensed ring system.  相似文献   

10.
Ruthenium(II) π‐coordination onto [28]hexaphyrins(1.1.1.1.1.1) has been accomplished. Reactions of bis‐AuIII and mono‐AuIII complexes of hexakis(pentafluorophenyl) [28]hexaphyrin with [RuCl2(p‐cymene)]2 in the presence of NaOAc gave the corresponding π‐ruthenium complexes, in which the [(p‐cymene)Ru]II fragment sat on the deprotonated side pyrrole. A similar reaction of the bis‐PdII [26]hexaphyrin complex afforded a triple‐decker complex, in which the two [(p‐cymene)Ru]II fragments sat on both sides of the center of the [26]hexaphyrin framework.  相似文献   

11.
The oxidation of the 28 VE cyclo‐E6 triple‐decker complexes [(CpRMo)2(μ,η66‐E6)] (E=P, CpR=Cp( 2 a ), Cp*( 2 b ), CpBn( 2 c )=C5(CH2Ph)5; E=As, CpR=Cp*( 3 )) by Cu+ or Ag+ leads to cationic 27 VE complexes that retain their general triple‐decker geometry in the solid state. The obtained products have been characterized by cyclic voltammetry (CV), EPR, Evans NMR, multinuclear NMR spectroscopy, MS, and structural analysis by single‐crystal X‐ray diffraction. The cyclo‐E6 middle decks of the oxidized complexes are distorted to a quinoid ( 2 a ) or bisallylic ( 2 b , 2 c , 3 ) geometry. DFT calculations of 2 a , 2 b , and 3 persistently result in the bisallylic distortion as the minimum geometry and show that the oxidation leads to a depopulation of the σ‐system of the cyclo‐E6 ligands in 2 a – 3 . Among the starting complexes, 2 c is reported for the first time including its preparation and full characterization.  相似文献   

12.
At the interaction of bis (η5-cyclopentadienyl)vanadium with iodobenzoic acid or trimethylsilyl o-iodobenzoate in toluene depending on the ratio of the initial reagents bis(η5-cyclopentadienyl)vanadium(o-iodobenzoate) or η5-cyclopentadienylvanadium-bis-o-iodobenzoate were obtained in high yields. The latter was also formed in the reaction of bis(η5-cyclopentadiene)vanadium dihloride with trimethylsilyl o-iodobenzoate.  相似文献   

13.
Treatment of the pentaphosphaferrocene [Cp*Fe(η5‐P5)] with CuI halides in the presence of different templates leads to novel fullerene‐like spherical molecules that serve as hosts for the templates. If ferrocene is used as the template the 80‐vertex ball [Cp2Fe]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 4 ), with an overall icosahedral C80 topological symmetry, is obtained. This result shows the ability of ferrocene to compete successfully with the internal template of the reaction system [Cp*Fe(η5‐P5)], although the 90‐vertex ball [{Cp*Fe(η511111‐P5)}12(CuCl)10(Cu2Cl3)5{Cu(CH3CN)2}5] ( 2 a ) containing pentaphosphaferrocene as a guest is also formed as a byproduct. With use of the triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] as a template the reaction between [Cp*Fe(η5‐P5)] and CuBr leads to the 90‐vertex ball [(CpCr)2(μ,η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuBr}10{Cu2Br3}5{Cu(CH3CN)2}5] ( 6 ), in which the complete molecule acts as a template. However, if the corresponding reaction is instead carried out with CuCl, cleavage of the triple‐decker complex is found and the 80‐vertex ball [CpCr(η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 5 ) is obtained. This accommodates as its guest [CpCr(η5‐As5)], which has only 16 valence electrons in a triplet ground state and is not known as a free molecule. The triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] requires 53.1 kcal mol?1 to undergo cleavage (as calculated by DFT methods) and therefore this reaction is clearly endothermic. All new products have been characterized by single‐crystal X‐ray crystallography. A favoured orientation of the guest molecules inside the host cages has been identified, which shows π???π stacking of the five‐membered rings (Cp and cyclo‐As5) of the guests and the cyclo‐P5 rings of the nanoballs of the hosts.  相似文献   

14.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

15.
The structural study of Sc complexes containing dianions of anthracene and tetraphenylethylene should shed some light on the nature of rare‐earth metal–carbon bonding. The crystal structures of (18‐crown‐6)bis(tetrahydrofuran‐κO)sodium bis(η6‐1,1,2,2‐tetraphenylethenediyl)scandium(III) tetrahydrofuran disolvate, [Na(C4H8O)2(C12H24O6)][Sc(C26H20)2]·2C4H8O or [Na(18‐crown‐6)(THF)2][Sc(η6‐C2Ph4)2]·2(THF), ( 1b ), (η5‐1,3‐diphenylcyclopentadienyl)(tetrahydrofuran‐κO)(η6‐1,1,2,2‐tetraphenylethenediyl)scandium(III) toluene hemisolvate, [Sc(C17H13)(C26H20)(C4H8O)]·0.5C7H8 or [(η5‐1,3‐Ph2C5H3)Sc(η6‐C2Ph4)(THF)]·0.5(toluene), ( 5b ), poly[[(μ2‐η33‐anthracenediyl)bis(η6‐anthracenediyl)bis(η5‐1,3‐diphenylcyclopentadienyl)tetrakis(tetrahydrofuran)dipotassiumdiscandium(III)] tetrahydrofuran monosolvate], {[K2Sc2(C14H10)3(C17H13)2(C4H8O)4]·C4H8O}n or [K(THF)2]2[(1,3‐Ph2C5H3)2Sc2(C14H10)3]·THF, ( 6 ), and 1,4‐diphenylcyclopenta‐1,3‐diene, C17H14, ( 3a ), have been established. The [Sc(η6‐C2Ph4)2] complex anion in ( 1b ) contains the tetraphenylethylene dianion in a symmetrical bis‐η3‐allyl coordination mode. The complex homoleptic [Sc(η6‐C2Ph4)2] anion retains its structure in THF solution, displaying hindered rotation of the coordinated phenyl rings. The 1D 1H and 13C{1H}, and 2D COSY 1H–1H and 13C–1H NMR data are presented for M[Sc(Ph4C2)2xTHF [M = Na and x = 4 for ( 1a ); M = K and x = 3.5 for ( 2a )] in THF‐d8 media. Complex ( 5b ) exhibits an unsymmetrical bis‐η3‐allyl coordination mode of the dianion, but this changes to a η4 coordination mode for (1,3‐Ph2C5H3)Sc(Ph4C2)(THF)2, ( 5a ), in THF‐d8 solution. A 45Sc NMR study of ( 2a ) and UV–Vis studies of ( 1a ), ( 2a ) and ( 5a ) indicate a significant covalent contribution to the Sc—Ph4C2 bond character. The unique Sc ate complex, ( 6 ), contains three anthracenide dianions demonstrating both a η6‐coordination mode for two bent ligands and a μ2‐η33‐bridging mode of a flat ligand. Each [(1,3‐Ph2C5H3)2Sc2(C14H10)3]2− dianionic unit is connected to four neighbouring units via short contacts with [K(THF)2]+ cations, forming a two‐dimensional coordination polymer framework parallel to (001).  相似文献   

16.
Synthesis, Structure, and Reactivity of η1‐ and η3‐Allyl Rhenium Carbonyls In (η3‐C3H5)Re(CO)4 one CO ligand can be substituted by PPh3, pyridine, isocyanide and benzonitrile. With 1,2‐bis(diphenylphosphino)ethylene, 1,1′‐bis(diphenylphosphino)ferrocene and 1,2‐bis(4‐pyridyl)ethane dinuclear ligand bridged complexes are obtained. The η3‐η1 conversion of the allyl ligand occurs on reaction of (η3‐C3H5)Re(CO)4 with the bidendate ligands 1,2‐bis(diphenylphosphino)ethane and 1,3‐bis(diphenylphosphino)propane and with 2,2′‐bipyridine (L–L) which gives the complexes (η1‐C3H5)Re(CO)3(L–L). By reaction of (η3‐C3H5)Re(CO)4 with bis(diphenylphosphino)methane the allyl group is protonated and under elemination of propene the complex (OC)3Re(Ph2PCHPPh2)(η1‐Ph2PCH2PPh2) ( 19 ) with a diphosphinomethanide ligand is formed. On heating solutions of (η3‐C3H5)Re(CO)4 and (η3‐C3H5)Re(CO)3(CN‐2,5‐Me2C6H3) ( 5 ) in methanol the methoxy bridged compounds Re4(CO)12(OH)(OMe)3 and Re2(CO)4(CN‐2,5‐Me2C6H3)4(μ‐OMe)2 ( 20 ) were isolated. The crystal structures of (η3‐C3H5)Re(CO)3(CNCH2SiMe3) ( 4 ), [(η3‐C3H5)(OC)3Re]2‐ (μ‐bis‐(diphenylphosphino)ferrocene) ( 8 ), (η1‐C3H5)Re(CO)3‐ (bpy) ( 14 ), of 19 , 20 and of (OC)3Re‐[Ph2P(CH2)3PPh2]Cl ( 16 ) were determined by X‐ray diffraction.  相似文献   

17.
The first two‐dimensional lanthanum(III) coordination polymer, [La(1,5‐NDS)1.5(H2O)5]n (1) (1,5‐NDS2? = 1,5‐naphthalenedisulfonate), was synthesized and structurally characterized by single‐crystal X‐ray diffraction analysis. The disulfonate ligands act in the η112 and η1113 binding modes to link the LaO9 tricapped trigonal prisms into a lamellar structure. It exhibits strong purple emission in the solid state.  相似文献   

18.
The η1‐thiocarbamoyl palladium complexes [Pd(PPh3)(η1‐SCNMe2)(η2‐S2R)] (R = P(OEt)2, 2 ; CNEt2, 3 ) and trans‐[Pd(PPh3)21‐SCNMe2)(η1‐Spy)], 4 , (pyS: pyridine‐2‐thionate) are prepared by reacting the η2‐thiocarbamoyl palladium complex [Pd(PPh3)22‐SCNMe2)][PF6], 1 with (EtO)2PS2NH4, Et2NCS2Na, and pySK in methanol at room temperature, respectively. Treatment of 1 with dppm (dppm: bis(diphenylphosphino)methane) in dichloromethane at room temperature gives complex [Pd(PPh3)(η1‐SCNMe2)(η2‐dppm)] [PF6], 5 . All of the complexes are identified by spectroscopic methods and complex 1 is determined by single‐crystal X‐ray diffraction.  相似文献   

19.
In recent years, coordination polymers constructed from multidentate carboxylate and pyridyl ligands have attracted much attention because these ligands can adopt a rich variety of coordination modes and thus lead to the formation of crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[μ2‐1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene‐κ2N:N′](μ3‐naphthalene‐1,4‐dicarboxylato‐κ4O1,O1′:O4:O4′)zinc(II)], [Zn(C12H6O4)(C16H14N2)]n, has been prepared by the self‐assembly of Zn(NO3)2·6H2O, naphthalene‐1,4‐dicarboxylic acid (1,4‐H2ndc) and 1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene (3,3′‐bphte) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X‐ray diffraction and single‐crystal X‐ray diffraction analysis. Each ZnII ion is six‐coordinated by four O atoms from three 1,4‐ndc2− ligands and by two N atoms from two 3,3′‐bphte ligands, forming a distorted octahedral ZnO4N2 coordination geometry. Pairs of ZnII ions are linked by 1,4‐ndc2− ligands, leading to the formation of a two‐dimensional square lattice ( sql ) layer extending in the ab plane. In the crystal, adjacent layers are further connected by 3,3′‐bphte bridges, generating a three‐dimensional architecture. From a topological viewpoint, if each dinuclear zinc unit is considered as a 6‐connected node and the 1,4‐ndc2− and 3,3′‐bphte ligands are regarded as linkers, the structure can be simplified as a unique three‐dimensional 6‐connected framework with the point symbol 446108. The thermal stability and solid‐state photoluminescence properties have also been investigated.  相似文献   

20.
Detailed ab initio calculations were performed on two structurally different cerium(III) single‐molecule magnets (SMMs) to probe the origin of magnetic anisotropy and to understand the mechanism of magnetic relaxations. The complexes [CeIII{ZnII(L)}2(MeOH)]BPh4 ( 1 ) and [Li(dme)3][CeIII(cot′′)2] ( 1 ; L=N,N,O,O‐tetradentate Schiff base ligand; 2 ; DME=dimethoxyethane, COT′′=1,4‐bis(trimethylsilyl)cyclooctatetraenyldianion), which are reported to be zero‐field and field‐induced SMMs with effective barrier heights of 21.2 and 30 K respectively, were chosen as examples. CASSCF+RASSI/SINGLE_ANISO calculations unequivocally suggest that mJ|±5/2〉 and |±1/2〉 are the ground states for complexes 1 and 2 , respectively. The origin of these differences is rooted back to the nature of the ligand field and the symmetry around the cerium(III) ions. Ab initio magnetisation blockade barriers constructed for complexes 1 and 2 expose a contrasting energy‐level pattern with significant quantum tunnelling of magnetisation between the ground state Kramers doublet in complex 2 . Calculations performed on several model complexes stress the need for a suitable ligand environment and high symmetry around the cerium(III) ions to obtain a large effective barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号