首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Linear-dendron (LD) hybrids are macromolecules comprising a linear polymer or oligomer conjugated at one or both termini with branched macromolecules called dendrons. Since their introduction approximately 2 decades ago, tremendous progress has been made in their synthesis, the study of their self-assembly, and toward their application in a variety of fields. This highlight is focused on aqueous assemblies of LD hybrids where function is imparted by the dendron, linear component, or both. These functions include the encapsulation and release of drug molecules, enhancement of cell uptake and targeting of specific tissues, and the stabilization of enzymes for catalysis. In addition, many stimuli-responsive LD hybrids that undergo changes in response to light, enzymes, pH, temperature, redox potential, or even multiple stimuli have been developed. LD hybrids can also be used to form networks via cross-linking reactions. Described here are the structure–property relationships underlying the functions of these materials, along with their potential applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 148–172  相似文献   

2.
A series of poly(ethylene glycol) monomethyl ether-block-poly(2-(dimethylamino)ethyl methacrylate) (mPEG-b-PDMAEMA) diblock copolymers were synthesized using atom transfer radical polymerization to achieve controlled polymer molecular weight and narrow molecular weight distribution. The thermoresponsive properties of the mPEG-b-PDMAEMA diblock copolymers in aqueous buffered solutions were determined using UV-Visible spectroscopy and dynamic light scattering. The cloud point, a soluble-to-insoluble transition, was observed for all mPEG-b-PDMAEMA diblock copolymer solutions. Increasing either the mPEG or PDMAEMA molecular weight resulted in a decrease in observed cloud points as a function of pH and polymer concentration. Changing the mPEG molecular weight determined whether a second, higher temperature, thermal transition was observed as a function of pH and polymer concentration. Controlling the thermoresponsive properties of mPEG-b-PDMAEMA diblock copolymers through polymer composition, concentration, and pH enables the tailoring of these copolymers for applications ranging from non-viral gene delivery to use as a strengthening agent in paper.  相似文献   

3.
We report the formation of a highly entangled and interconnected, self-assembled, wormlike-cylinder network of polystyrene-block-poly(ethylene oxide) in N, N-dimethylformamide/water. In this system, N,N-dimethylformamide was a common solvent and water was a selective solvent for the poly(ethylene oxide) blocks. The degrees of polymerization of the polystyrene and poly(ethylene oxide) blocks were 962 and 227, respectively. The network was formed at copolymer concentrations higher than 0.4 wt % and consisted of self-assembled, wormlike cylinders that were interconnected by Y-shaped, T-shaped, and multiple junctions. The network morphology was visualized with transmission electron microscopy. Capillary viscometry measurements revealed an order-of-magnitude increase in the inherent viscosity of the colloidal system upon the formation of the network. A similar effort to obtain a wormlike-cylinder network in an N,N-dimethylformamide/acetonitrile system, in which acetonitrile was a selective solvent for the poly(ethylene oxide) blocks, was unsuccessful even at high copolymer concentrations; instead, the wormlike cylinders showed a tendency to align. The viscosity measurements also did not show a substantial increase in the inherent viscosity. Thus, the solvent played a critical role in determining the formation of the self-assembled, wormlike-cylinder network. This formation of the network resulted from an interplay between the end-capping energy, bending energy (curvature), and configurational entropy of the self-assembled, wormlike-cylinder micelles that minimized the free energy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3605–3611, 2006  相似文献   

4.
A series of amphiphilic diblock copolymers having poly(ethylene glycol) (PEG) as one block and a polypeptide as the other block were synthesized by ring‐opening polymerization using PEG‐amine as a macroinitiator. These polymers were characterized by 1H‐NMR and gel permeation chromatography. The influence of the substitution ratio of tertiary amine‐containing groups on the pH sensitivity of the polymers was investigated in detail. Core/shell‐structured micelles were fabricated from these polymers using an organic solvent‐free method. pH‐ and concentration‐dependent micellization behaviors were investigated by dynamic light scattering and fluorescence microscopy. Micelles loaded with doxorubicin, selected as a model drug, showed restricted drug release at physiological pH but accelerated drug release at tumor extracellular pH. Collectively, our findings suggest that these pH‐sensitive micelles might have great potential for cancer therapy applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4175–4182  相似文献   

5.
The encapsulation of the nanocrystalline manganese‐doped zinc sulfide (ZnS:Mn) in poly(styrene‐b‐2vinylpyridine) (PS‐PVP) diblock copolymers is reported. Below the critical micelle concentration in the absence of nanocrystals (NCs), inverse micelles of PS‐PVP were induced by adding ZnS:Mn NCs, the presence of which was confirmed by scanning force microscope and dynamic light scattering. In toluene, a PS‐selective solvent, the less‐soluble PVP blocks preferentially surround the ligand‐coated ZnS:Mn NCs. For PS‐PVP encapsulated ZnS:Mn NCs, the ratio of blue emission to orange emission of ZnS:Mn NCs is dependent on both the concentration of PS‐PVP and the solvent quality. The pyridine of PVP blocks form complexes with the Zn atoms via the nitrogen lone pair and thus the sulfur vacancies are passivated. As a result, the defect‐related blue emission is selectively quenched even when the micelles are not formed. As the concentration of PS‐PVP encapsulating the ZnS:Mn NCs increases, the intensity of blue emission decreases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3227–3233, 2006  相似文献   

6.
Well‐defined amphiphilic block copolymers were prepared by ring opening metathesis polymerization and their stimuli responsive behavior of formed micelles in aqueous solution was investigated. The hydrophobic core of the micelles consists of either a poly[5,6‐bis(ethoxymethyl)bicyclo[2.2.1]hept‐2‐ene]‐block with a glass transition Tg at room temperature or a poly[endo,exo[2.2.1]bicyclohept‐5‐ene‐2,3‐diylbis (phenylmethanone)] with a Tg of 143 °C. For the polyelectrolyte shell, the precursor block poly[endo,exo[2.2.1]bicyclohept‐5‐ene‐2,3‐dicarboxyclic tert‐butylester] was transformed into the free acidic block by cleavage of the tert‐butyl groups using trifluoroacetic acid. Micellar solutions were prepared by dialysis, dissolving the copolymers in dimethyl sulfoxide which was subsequently replaced by water. All polymers form micelles with radii between 10 and 20 nm at a pH‐value below 5, where the carboxylic acid groups are in the protonated state. The block copolymer micelles show a strong increase of the hydrodynamic radius with increasing pH‐value, due to the repulsion among the formed carboxylate anions resulting in a stretching of the polymer chains. In this state, the micelles exhibit responsive behavior to ionic strength where a contraction of the micelles is observed as the carboxylate charges are balanced by sodium ions, whereas no changes of the hydrodynamic radius on addition of salt are observed at low pH. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1178–1191, 2009  相似文献   

7.
A diblock copolymer of poly(N‐isopropylacrylamide) and poly(ethylene oxide) (PiPA‐b‐PEO) has been prepared by radical polymerization with a ceric ion initiation system. Its thermosensitive micellization has been investigated by means of IR and fluorescence spectroscopy. The PiPA segments are critically dehydrated above 33.5°C (5 wt.‐%) and associate through hydrophobic interaction to form the hydrophobic core of the micelle. In contrast, the change in the hydration state of the PEO segments upon micellization is small.  相似文献   

8.
9.
Summary: Aqueous dispersions of diblock copolymer micelles with homogeneous hydrophobic core (polystyrene) and heterogeneous amphiphilic corona from ionic N-ethyl-4-vinylpyridinium bromide (EVP) and hydrophobic 4-vinylpyridine (4VP) units have been prepared at pH 9. The structure and dispersion stability of micelles as function of the ratio and distribution pattern of ionic and hydrophobic units in corona have been systematically studied by means of transmission electron microscopy, static and dynamic light scattering, UV-spectrophotometry techniques. It was shown that gradual decrease of the quantity of EVP-units in corona had no impact on micelle structure until its fraction was above 0.7. When EVP-fraction dropped below this point noticeable changes in micelle mass and dimensions were observed. In the case of random distribution of 4VP and EVP units these changes were moderate in value and jump-like in character. In the case of mictoarm (starlike) distribution of 4VP and EVP blocks changes were large in value and monotonous in character. The presented results may be of certain use for design of polymer micelles with nanosegregated corona.  相似文献   

10.
Micelles made from linear polystyrene‐block‐polyisoprene (PS/PI) in decane are spherical. The differences in the structure of micelles made from linear and cyclic PS/PI were investigated using small‐angle X‐ray scattering at rest and under shear flow. The effect of shear revealed that micelles made from cyclic copolymer chains have an elongated shape, which was confirmed by transmission electron microscopy. The cyclization of diblock copolymer chains is thus a new method to control the micellar morphology.

  相似文献   


11.
Amphiphilic diblock copolymers with various block compositions were synthesized on poly(2‐ethyl‐2‐oxazoline) (PEtOz) as a hydrophilic block and poly(4‐methyl‐ε‐caprolactone) (PMCL) or poly(4‐phenyl‐ε‐caprolactone) (PBCL) as a hydrophobic block. These PEtOz‐b‐PMCL and PEtOz‐b‐PBCL copolymers consisting of soft domains of amorphous PEtOz and PM(B)CL had no melting endothermal peaks but displayed Tg. The lower critical solution temperature (LCST) values for the PEtOz‐b‐PMCL, and the PEtOz‐b‐PBCL aqueous solution were observed to shift to lower temperature than PEtOz homopolymers. Their aqueous solutions were characterized using fluorescence techniques and dynamic light scattering (DLS). The block copolymers formed micelles with critical micelle concentrations (CMCs) in the range 0.6–11.1 mg L?1 in an aqueous phase. As the length of the hydrophobic PMCL or PBCL blocks elongated, lower CMC values were generated. The mean diameters of the micelles were between 127 and 318 nm, with PDI in the range of 0.06–0.21, suggesting nearly monodisperse size distributions. The drug entrapment efficiency and drug‐loading content of micelles depend on block polymer compositions. In vitro cell viability assay showed that PEtOz‐b‐PMCL has low cytotoxicity. Doxorubicin hydrochloride (DOX)‐loaded micelles facilitated human cervical cancer (HeLa) cell uptake of DOX; uptake was completed within 2 h, and DOX was able to reach intracellular compartments and enter the nuclei by endocytosis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2769–2781  相似文献   

12.
For many years researchers have understood the importance of the extracellular pH in solid tumors in relation to cancer morbidity and mortality. However current diagnostic imaging techniques do not allow for the non-invasive determination of pH in vivo. Recent research in the use of pH-responsive organic polymers for the preparation of imaging agents capable of imaging pH in vivo has demonstrated the tremendous potential of these materials in overcoming many of the problems associated with low molecular weight pH-responsive imaging agents. This review will highlight these recent developments with a focus on the use of pH-responsive polymers in the development of imaging agents for both fluorescent imaging and magnetic resonance spectroscopy and imaging. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1062–1067  相似文献   

13.
A novel organosoluble polynorbornene bearing a polar, pendant, ester‐bridged epoxy group [poly(oxiran‐2‐ylmethyl 2‐methylbicyclo[2.2.1]hept‐5‐ene‐2‐carboxylate) (polyOMMC)] was prepared via the living ring‐opening metathesis polymerization (ROMP) of active norbornenes with a Ru catalyst. PolyOMMC exhibited excellent solubility in a variety of solvents. The number‐average molecular weight of polyOMMC linearly increased with the [M]/[I] ratio (where [M] is the monomer concentration and [I] is the initiator concentration), and a narrow polydispersity of 1.09–1.19 was observed; this was considered a living polymerization. When ROMP of oxiran‐2‐ylmethyl 2‐methylbicyclo[2.2.1]hept‐5‐ene‐2‐carboxylate with [M]/[I] = 350 was carried out at 30 °C in CH2Cl2, the number‐average molecular weight (7.01 × 104; polydispersity index = 1.07) was close to the calculated molecular weight (7.28 × 104), and a diblock copolymer was observed after the addition of another monomer ([M]/[I] = 350) with an increase in the number‐average molecular weight (1.60 × 105; polydispersity index = 1.11), which was close to the calculated molecular weight (1.61 × 105). The modified polynorbornenes retained good solubility in methylene chloride, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, N,N‐dimethylacetamide, and N‐methyl‐2‐pyrrdione. High‐performance polynorbornenes with active epoxy groups could be designed with great potential for applications in photoresists, UV curing, and elastomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4428–4434, 2006  相似文献   

14.
Amphiphilic poly(ethylene oxide)‐block‐poly(isoprene) (PEO‐b‐PI) diblock copolymers were prepared by nitroxide‐mediated polymerization of isoprene from alkoxyamine‐terminal poly(ethylene oxide) (PEO). PEO monomethyl ether (Mn ≈ 5200 g/mol) was functionalized by esterification with 2‐bromopropionyl bromide with subsequent copper‐mediated replacement of the terminal bromine with 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide. The resulting PEO‐alkoxyamine macroinitiator was used to initiate polymerization of isoprene in bulk and in solution at 125 °C to yield PEO‐b‐PI block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Polymerizations were first order in isoprene through 35% conversion. Micellar aggregates of PEO‐b‐PI in aqueous solution were crosslinked by treatment with a water‐soluble redox initiating system, and persistent micellar structures were observed in the dry state by AFM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2977–2984, 2005  相似文献   

15.
The design and synthesis of well‐defined polymethylene‐b‐polystyrene (PM‐b‐PS, Mn = 1.3 × 104–3.0 × 104 g/mol; Mw/Mn (GPC) = 1.08–1.18) diblock copolymers by the combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) was successfully achieved. The 1H NMR spectrum and GPC traces of PM‐b‐PS indicated the successful extension of PS segment on the PM macroinitiator. The micellization behavior of such diblock copolymers in tetrahydrofuran were characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques. The average aggregate sizes of PM‐b‐PS diblock copolymers with the same length of PM segment in tetrahydrofuran solution (1.0 mg mL?1) increases from 104.2 nm to 167.7 nm when the molecular weight of PS segment increases. The spherical precipitated aggregates of PM‐b‐PS diblock copolymers with an average diameter of 600 nm were observed by AFM. Honeycomb porous films with the average diameter of 3.0 μm and 6.0 μm, respectively, were successfully fabricated using the solution of PM‐b‐PS diblock copolymers in carbon disulfide via the breath‐figure (BF) method under a static humid condition. The cross‐sections of low density polyethylene (LDPE)/polystyrene (PS)/PM‐b‐PS and LDPE/polycarbonate (PC)/PM‐b‐PS blends were observed by scanning electron microscope and reveal that the PM‐b‐PS diblock copolymers are effective compatilizers for LDPE/PS and LDPE/PC blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1894–1900, 2010  相似文献   

16.
We report a combined experimental and theoretical study of micellization of block copolymer with hydrophilic nonionic corona‐forming blocks and weak polyelectrolyte (wPE) core‐forming blocks with pH‐triggered solubility in aqueous solutions. We demonstrate that in addition to micelles with neutral cores, there exist two other types of micelles with PE‐ or ionomer‐like cores, in which monovalent counterions are released or condensed on core wPE block, respectively. The transition between the two types of micelles occurred upon changes in ionization of the PE core block and resulted in nonmonotonous changes of aggregation number as a function of pH. Such micelles with stimulus responsive cores represent promising nanocarriers for controlled delivery applications.

  相似文献   


17.
A new method to synthesize a variety of well-controlled polylactide (PLA)-based block copolymers having disulfide linkages at block junctions (PLA-ss-PATRPs) was investigated. The method uses a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) that initiates the synthesis of a new disulfide-labeled double-head initiator having both terminal OH and Br groups (HO-ss-iBuBr). The amount of tin catalyst and polymerization time significantly influenced the control of ROP initiated with HO-ss-iBuBr. A series of ATRP of various methacrylates as well as acrylate and styrene in the presence of the resulting PLA-ss-iBuBr macroinitiators proceeded in a living manner. These well-controlled PLA-ss-PATRPs were further characterized for thermal properties using differential scanning calorimetry and thiol-responsive degradation upon the cleavage of disulfide linkages. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym. Chem. 2013, 51, 3071–3080  相似文献   

18.
A poly(p‐phenylene) (PPP)‐poly(4‐diphenylaminostyrene) (PDAS) bipolar block copolymer was synthesized for the first time. A prerequisite prepolymer, poly(1,3‐cyclohexadiene) (PCHD)‐PDAS binary block copolymer, in which the PCHD block consisted solely of 1,4‐cyclohexadiene (1,4‐CHD) units, was synthesized by living anionic block copolymerization of 1,3‐cyclohexadiene and 4‐diphenylaminostyrene. To obtain the PPP‐PDAS bipolar block copolymer, the dehydrogenation of this prepolymer with quinones was examined, and tetrachloro‐1,2‐(o)‐benzoquinone was found to be an appropriate dehydrogenation reagent. This dehydrogenation reaction was remarkably accelerated by ultrasonic irradiation, effectively yielding the target PPP‐PDAS bipolar block copolymer. The hole and electron drift mobilities for PPP‐PDAS bipolar block copolymer were both on the order of 10?3 to 10?4 cm2/V·s, with a negative slope when plotted against the square root of the applied field. Therefore, this bipolar block copolymer was found to act as a bipolar semi‐conducting copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
20.
We report the synthesis, micellar structures, and multifunctional sensory properties of new conjugated rod‐coil block copolymers, poly(3‐hexylthiophene)‐block‐poly(2‐(di methylamino)ethylmethacrylate)(P3HT‐b‐PDMAEMA). The new copolymers, synthesized by atom transfer radical polymerization of P3HT macroinitiator, consisted PDMAEMA coil lengths of 43, 65, and 124 repeating units. All the P3HT‐b‐PDMAEMA copolymers exhibit a similar low critical solution temperature in water around 33 °C. The micellar structures of the synthesized polymers were characterized by AFM, TEM, and dynamic light scattering, by varying temperature, pH, and water/THF composition. The micelles of P3HT20b‐PDMAEMA43 in water had a reversible size change from 75 ± 5 nm to 132 ± 5 nm on heating from 25 to 55 °C and reduced to the original size during cooling. In addition, the micellar size also showed a significant pH dependence, changing from 67 ± 8 nm (pH = 12) to 222 ± 6 nm (pH = 4), depending on the protonation of the PDMAEMA blocks and their electrostatic repulsion. The micellar structure of three P3HT‐b‐PDMAEMA copolymers changed from spheres, to vesicles, and finally to larger sphere micelles as the solvent composition varied from 0 to 100 wt % water in the mixed solvent. The different micellar structures of P3HT20b‐PDMAEMA43 solution led to a red‐shift on the absorption or photoluminescence spectra and exhibited the emission colors of yellow, orange, red, and dark red with increasing the water content. This study suggested that new copolymers had potential applications as multifunctional sensory materials toward temperature, pH, and solvent. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号