首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transition metals have been successfully applied to catalyze non-natural chemical transformations within living cells, with the highly efficient labeling of subcellular components and the activation of prodrugs. In vivo applications, however, have been scarce, with a need for the specific cellular targeting of the active transition metals. Here, we show the design and application of cancer-targeting palladium catalysts, with their specific uptake in brain cancer (glioblastoma) cells, while maintaining their catalytic activity. In these cells, for the first time, two different anticancer agents were synthesized simultaneously intracellularly, by two totally different mechanisms (in situ synthesis and decaging), enhancing the therapeutic effect of the drugs. Tumor specificity of the catalysts together with their ability to perform simultaneous multiple bioorthogonal transformations will empower the application of in vivo transition metals for drug activation strategies.  相似文献   

2.
The development of metal‐free catalysts as an alternative to the use of transition metals has gained tremendous interest in the past. In catalysis, Lewis acidity is one of the major principles used for the activation of organic compounds. Improving the reactivity and selectivity of Lewis acids by utilizing bidentate interactions was already proposed 50 years ago. Nevertheless, product inhibition due to strong binding has made applications of bidentate Lewis acids challenging for many years. Recently, bis‐boron compounds have been found to be very effective and several applications in Diels–Alder reactions, carbon dioxide reduction, and ammonia‐borane dehydrogenation were reported. All three transformations are enabled by the catalyst at different stages during the course of the reaction. These new and useful examples illustrate the great potential of the concept.  相似文献   

3.
Hydrosilation reactions represent an important class of chemical transformations and there has been considerable recent interest in expanding the scope of these reactions by developing new catalysts. A major theme to emerge from these investigations is the development of catalysts with electrophilic character that transfer electrophilicity to silicon by Si‐H activation. This type of mechanism has been proposed for catalysts ranging from Group 4 transition metals to Group 15 main group species. Additionally, other electrophilic silicon species, such as silylene complexes and η3‐H2SiRR′ complexes, have been identified as intermediates in hydrosilation reactions. In this Review, different types of catalysts are compared to highlight the range of hydrosilation mechanisms that feature electrophilic silicon centers. The importance of these catalysts to the development of new hydrosilation reactions is also discussed.  相似文献   

4.
In this Review, we summarize the current state of the art in late‐transition‐metal‐catalyzed reactions of acyl fluorides, covering both their synthesis and further transformations. In organic reactions, the relationship between stability and reactivity of the starting substrates is usually characterized by a trade‐off. Yet, acyl fluorides display a very good balance between these properties, which is mostly due to their moderate electrophilicity. Thus, acyl fluorides (RCOF) can be used as versatile building blocks in transition‐metal‐catalyzed reactions, for example, as an “RCO” source in acyl coupling reactions, as an “R” source in decarbonylative coupling reactions, and as an “F” source in fluorination reactions. Starting from the cleavage of the acyl C?F bond in acyl fluorides, various transformations are accessible, including C?C, C?H, C?B, and C?F bond‐forming reactions that are catalyzed by transition‐metal catalysts that contain the Group 9–11 metals Co, Rh, Ir, Ni, Pd, or Cu.  相似文献   

5.
Molecular syntheses largely rely on time‐ and labour‐intensive prefunctionalization strategies. In contrast, C?H activation represents an increasingly powerful approach that avoids lengthy syntheses of prefunctionalized substrates, with great potential for drug discovery, the pharmaceutical industry, material sciences, and crop protection, among others. The enantioselective functionalization of omnipresent C?H bonds has emerged as a transformative tool for the step‐ and atom‐economical generation of chiral molecular complexity. However, this rapidly growing research area remains dominated by noble transition metals, prominently featuring toxic palladium, iridium and rhodium catalysts. Indeed, despite significant achievements, the use of inexpensive and sustainable 3d metals in asymmetric C?H activations is still clearly in its infancy. Herein, we discuss the remarkable recent progress in enantioselective transformations via organometallic C?H activation by 3d base metals up to April 2019.  相似文献   

6.
Transition‐metal carbene complexes have been known for about 50 years and widely applied as reagents and catalysts in organic transformations. In contrast, the carbene chemistry of the rare‐earth metals is much less developed, but has attracted the research interest in the recent years. In this field rare‐earth‐metal alkylidene, especially methylidene, compounds are an emerging class of compounds with a high synthetic potential for organometallic chemistry and maybe in the future also for organic chemistry.  相似文献   

7.
Transition metal‐catalyzed transformations of vinyldiazo compounds have become a versatile tool in organic synthesis. Although several transition metals have been investigated for this purpose, this field has been mainly dominated by dirhodium catalysts. Remarkable levels of chemo‐, regio‐, diastereo‐ and enantioselectivity have been reached in some of these rhodium‐catalyzed transformations. In the last few years coinage metals have also emerged as useful catalysts in transformations involving vinyldiazo compounds. In some cases, highly efficient catalyst‐dependent protocols arising from divergent mechanistic pathways have been reported. In this Personal Account, we aim to showcase recent advances in metal coinage catalyzed transformations of vinyldiazoacetates, an exciting field of research to which our group has actively contributed in the last few years.  相似文献   

8.
Mitochondrial membrane potential is more negative in cancer cells than in normal cells, allowing cancer targeting by delocalized lipophilic cations (DLCs). However, as the difference is rather small, these drugs affect also normal cells. Now a concept of pro‐DLCs is proposed based on an N‐alkylaminoferrocene structure. These prodrugs are activated by the reaction with reactive oxygen species (ROS) forming ferrocenium‐based DLCs. Since ROS are overproduced in cancer, the high‐efficiency cancer‐cell‐specific targeting of mitochondria could be achieved as demonstrated by fluorescence microscopy in combination with two fluorogenic pro‐DLCs in vitro and in vivo. We prepared a conjugate of another pro‐DLC with a clinically approved drug carboplatin and confirmed that its accumulation in mitochondria was higher than that of the free drug. This was reflected in the substantially higher anticancer effect of the conjugate.  相似文献   

9.
The synthetic utility of alkyl‐onium salt compounds is widely recognized in the field of organic chemistry. Among the wide variety of onium salts, quaternary ammonium, phosphonium, and tertiary sulfonium salts have been the most useful compounds in organic syntheses. These compounds have been very useful reagents in the construction of organic building blocks. In addition, onium salts are known as reliable catalysts, which are used to promote important organic transformations by serving as phase‐transfer and ion‐pair catalysts through the activation of nucleophiles. Although phase‐transfer catalysis is a major direction for onium salt catalysis, hydrogen‐bonding catalysis of alkyl‐onium salts, which is promoted via the activation of electrophiles, has recently become a relevant topic in the field of onium salt chemistry. This Minireview introduces new possibilities and future directions for alkyl‐onium salt chemistry based on its use in hydrogen‐bonding catalysis and on its overall utility.  相似文献   

10.
Metal‐organic frameworks (MOFs) are highly promising Lewis acid catalysts; they either inherently possess Lewis acid sites (LASs) on it or the LASs can be generated through various post‐synthetic methods, the later can be performed in MOFs in a trivial fashion. MOFs are suitable platform for catalysis because of its highly crystalline and porous nature. Moreover, with recent advancements, thermal and chemical stability is not a problem with many MOFs. In this Minireview, an enormous versatility of MOFs, in terms of their microporosity/mesoporosity, size/shape selectivity, chirality, pore size, etc., has been highlighted. These are advantageous for designing and performing various targeted organic transformations. Although, many organic transformations catalyzed by MOFs with LASs have been reported in the recent past. In this Minireview, we have restricted ourselves to four important organic reactions: (i) cyanosilylation, (ii) Diels–Alder reaction, (iii) C?H activation, and (iv) CO2‐addition. The discussion focuses mostly on the recent reports (42 examples).  相似文献   

11.
In this work, we aim to develop cancer cell‐targeting AIE dots based on a polyyne‐bridged red‐emissive AIEgen, 2TPE‐4E, through the combination of metabolic engineering and bio‐orthogonal reactions. Azide groups on a tumor were efficiently produced by intravenous injection of Ac4ManNAz and glycol‐metabolic engineering. These bio‐orthogonal azide groups could facilitate the specific targeting of DBCO‐AIE dots to the tumor cells undergoing metal‐free click reaction in vivo. The efficiency of this targeting strategy could be further improved with the development of new bio‐orthogonal chemical groups with higher reactivity and a large amount of AIEgens could be delivered to the tumor for diagnosis.  相似文献   

12.
C?H activation bears great potential for enabling sustainable molecular syntheses in a step‐ and atom‐economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C?H/N?H/C?O/C?H functionalization sequence. The powerful iron catalysis occurred under external‐oxidant‐free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4‐iron migration regime for facile C?H activations.  相似文献   

13.
Herein, we propose a drug‐free approach to cancer therapy that involves cancer cell targeting calcification (CCTC). Several types of cancer cells, such as HeLa cells, characterized by folate receptor (FR) overexpression, can selectively adsorb folate (FA) molecules and then concentrate Ca2+ locally to induce specific cell calcification. The resultant calcium mineral encapsulates the cancer cells, inducing their death, and in vivo assessments confirm that CCTC treatment can efficiently inhibit tumor growth and metastasis without damaging normal cells compared with conventional chemotherapy. Accordingly, CCTC remarkably improve the survival rate of tumor mice. Notably, both FA and calcium ions are essential ingredients in human metabolism, which means that CCTC is a successful drug‐free method for tumor therapy. This achievement may further represent an alternative cancer therapy characterized by selective calcification‐based substitution of sclerosis for tumor disease.  相似文献   

14.
Venetoclax (ABT‐199) and idasanutlin (RG7388) are efficient anticancer drugs targeting two essential apoptosis markers, Bcl‐2 and MDM2, respectively. Recent studies have shown that the combination of these two drugs leads to remarkable enhancement of anticancer efficacy, both in vitro and in vivo. In an attempt to disclose the relationships of their protein targets, competitive affinity‐based proteome profiling coupled with bioimaging was employed to characterize their protein targets in the same cancer cell line and tumor tissue. A series of protein hits, including ITPR1, GSR, RER1, PDIA3, Apoa1, and Tnfrsf17 were simultaneously identified by pull‐down/LC–MS/MS with the two sets of affinity‐based probes. Dual imaging was successfully carried out, with the simultaneous detection of Bcl‐2 and MDM2 expression in various cancer cells. This could facilitate the novel diagnostic and therapeutic strategies of dual targeting of Bcl‐2/MDM2.  相似文献   

15.
While water‐compatible Lewis acids have great potential as accessible and environmentally benign catalysts for various organic transformations, efficient immobilization of such Lewis acids while keeping high activity and without leaching of metals even under aqueous conditions is a challenging task. Self‐assembled nanocomposite catalysts of organic polymers, carbon black, aluminum reductants, and scandium salts as heterogeneous water‐compatible Lewis acid catalysts are described. These catalysts could be successfully applied to various C? C bond‐forming reactions without leaching of metals. Scanning transmission electron microscopy analyses revealed that the nanocomposite structure of Al and Sc was fabricated in these heterogeneous catalysts. It is noted that Al species, which are usually decomposed rapidly in the presence of water, are stabilized under aqueous conditions.  相似文献   

16.
Despite Cp*CoIII catalysts having emerged as a very attractive alternative to noble transition metals for the construction of heterocyclic scaffolds through C−H activation, the structure of the reactive species remains uncertain. Herein, we report the identification and unambiguous characterization of two long‐sought cyclometalated Cp*CoIII complexes that have been proposed as key intermediates in C−H functionalization reactions. The addition of MeCN as a stabilizing ligand plays a crucial role, allowing the access to otherwise highly reactive species. Mechanistic investigations demonstrate the intermediacy of these species in oxidative annulations with alkynes, including the direct observation, under catalytic conditions, of a previously elusive post‐migratory insertion seven‐membered cobaltacycle.  相似文献   

17.
Interest and challenges remain in designing and synthesizing catalysts with nature‐like complexity at few‐nm scale to harness unprecedented functionalities by using sustainable solar light. We introduce “nanocatalosomes”—a bio‐inspired bilayer‐vesicular design of nanoreactor with metallic bilayer shell‐in‐shell structure, having numerous controllable confined cavities within few‐nm interlayer space, customizable with different noble metals. The intershell‐confined plasmonically coupled hot‐nanospaces within the few‐nm cavities play a pivotal role in harnessing catalytic effects for various organic transformations, as demonstrated by “acceptorless dehydrogenation”, “Suzuki–Miyaura cross‐coupling” and “alkynyl annulation” affording clean conversions and turnover frequencies (TOFs) at least one order of magnitude higher than state‐of‐the‐art Au‐nanorod‐based plasmonic catalysts. This work paves the way towards next‐generation nanoreactors for chemical transformations with solar energy.  相似文献   

18.
Tumor initiating cells (TICs) have been implicated in clinical relapse and metastasis of a variety of epithelial cancers, including lung cancer. While efforts toward the development of specific probes for TIC detection and targeting are ongoing, a universal TIC probe has yet to be developed. We report the first TIC‐specific fluorescent chemical probe, TiY, with identification of the molecular target as vimentin, a marker for epithelial‐to‐mesenchymal transition (EMT). TiY selectively stains TICs over differentiated tumor cells or normal cells, and facilitates the visualization and enrichment of functionally active TICs from patient tumors. At high concentration, TiY also shows anti‐TIC activity with low toxicity to non‐TICs. With the unexplored target vimentin, TiY shows potential as a first universal probe for TIC detection in different cancers.  相似文献   

19.
Metal‐free catalysts have distinct advantages over metal and metal oxide catalysts, such as lower cost as well as higher reliability and sustainability. Among the nonmetal compounds used in catalysis, boron‐containing compounds with a few unique properties have been developed. In this Minireview, the recent advances in the field of boron‐containing metal‐free catalysts are presented, including binary and ternary boron‐containing catalytic materials. Additionally, the three main applications in catalysis are considered, namely, electrocatalysis, thermal catalysis, and photocatalysis, with the role of boron discussed in depth for each specific catalytic application. Boron‐containing compounds could have a substantial impact on the field of metal‐free catalysts in the future.  相似文献   

20.
While there have been many studies on synthetic chloride carriers and a recent application for apoptotic cell death, so far, the proposed huge potential of these systems in targeting cancer has not been realized due to their cytotoxicity to healthy cells. Herein, we describe the development of an indole‐2‐carboxamide receptor as an efficient membrane chloride carrier while the corresponding o‐nitrobenzyl‐linked derivative is a procarrier of the ion. Photoirradiation of the procarrier in liposomes results in release of the active carrier with up to 90 % transport efficiency. Such photorelease of the carrier also works within cancer cells, resulting in efficient cell killing. Such photocleavable procarriers have great potential as a photodynamic therapy to combat various types of cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号