首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin‐film growth of aragonite CaCO3 on annealed poly(vinyl alcohol) (PVA) matrices is induced by adding Mg2+ into a supersaturated solution of CaCO3. Both the growth rate and surface morphology of the aragonite thin films depend upon the concentration of Mg2+ in the mineralization solution. In the absence of PVA matrices, no thin films are formed, despite the presence of Mg2+. Molecular dynamics simulation of the CaCO3 precursor suggests that the transition of amorphous calcium carbonate to crystals is suppressed in the presence of Mg2+. The role for ionic additives in the crystallization of CaCO3 on organic templates obtained in this study may provide useful information for the development of functional hybrid materials.  相似文献   

2.
Here, agar hydrogel was selected as diffusion medium and template to control the biomimetic mineralization of calcium carbonate (CaCO3). Due to three dimensional network structures and abundant functional groups (such as, hydroxyl groups), Ca2+ ions were uniformly distributed in the network and electrostatically attracted. The diffusion speed and range of CO32? ions were mediated by the concentration of hydrogel medium. Under the synergistic effect of Mg2+ ions, the crystal CaCO3 was induced by gas phase diffusion method in the hydrogel system. The results showed that the concentrations of Mg2+ ions and agar hydrogel had no obvious effect on the calcite phase of CaCO3, but the morphologies and sizes changed with concentrations of medium and Mg2+ ions. Attribute to template effect, the crystallization behavior and growth rate of CaCO3 crystals were regulated. Since Mg2+ ions were easily adsorbed on the surfaces of unit cell, the unique structure of CaCO3 was precisely controlled. This study provides a useful reference and inspiration for the understandings of the contributions of ion supply rate in bio-mineralization and hydrogel medium in biomimetic mineralization.  相似文献   

3.
Star-shaped calcite crystals with symmetry were obtained in the mixed solvent of ethanol and H2O (4:1 vol%) using Mg2+ as grow mineralizer without any organic template under the solvothermal condition. The crystals branched to the six directions perpendicular to the c-axis. In the process, Mg2+ takes an important influence on such novel morphology via entering the crystal lattice of calcite to absorb the special plane and change the general growth habit. The aqueous solvent is favorable to form aragonite, while the presence of alcohol promotes the formation of calcite, the thermodynamically stable phase. The products were characterized by the techniques of XRD, SEM, SAED, IR and ICP. The formation process was also primarily studied.  相似文献   

4.
The Mg2+ ion content in the surface layer of calcite in relation to the Mg2+ ion content in Ca-45 labelled solution was determined by Ca2+-Mg2+ ion exchange process. It was found that the increase of the molar ratio Mg/Ca in the surface due to increase of Mg2+ concentration in solution is decreasing significantly when approaching ratios of Mg/Ca ~ 1 and ~ 3. The experimental exchange isotherm can be used to relate the Mg/Ca molar ratio of solutions to that of the surface layers of calcite.  相似文献   

5.
Biomineralization is believed to be achieved by the intimate cooperation of soluble macromolecules and an insoluble matrix at the specific inorganic–organic interface. It has been reported that positively charged matrices play an important role in controlling the structure of CaCO3 at surfaces, although detailed mechanisms remain unclear. In this work, we studied the transformation from amorphous CaCO3 to calcite crystals on surfaces by using thin films of poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) and its quaternized form. The positively charged PDMAEMA film was found to possess unique properties for CaCO3 crystallization: individually separated, single calcite crystals were formed on the PDMAEMA film in the absence of poly(acrylic acid) (PAA), while circularly fused calcite crystals were formed in the presence of PAA. The circularly fused (rosette‐shaped) calcite crystals could be changed from a completely packed rosette to a ring‐shaped, hollow structure by tuning the crystallization conditions. A number of factors, such as reaction time, amount of (NH4)2CO3, concentration of PAA, and charge of matrix‐films, were varied systematically, and we now propose a mechanism based on these observations.  相似文献   

6.
The combined effect of templating and solution additives on calcite crystallization was studied. Self-assembled monolayers of mercaptoundecanoic acid supported on silver, as templates, induced the uniform, oriented nucleation of calcite from the (012) plane. The presence of Mg2+ in the crystallizing solution affected the crystal growth dramatically, due to the selective Mg binding to the calcite planes roughly parallel to the c-axis. Highly homogeneous arrays of oriented crystals with characteristic sizes, shapes, and morphology, depending on the relative concentration of Mg and Ca ions, were synthesized.  相似文献   

7.
Crystallization of calcium oxalate is studied mainly in the diluted healthy urine using scanning electron microscopy (SEM), and is compared with the crystallization in the diluted pathological urine. It suggests that the average sizes of calcium oxalate crystals are not in direct proportion to the concentrations of Ca2+ and Ox2- ions. Only in the concentration range of 0.60-0.90 mmol/L can larger size of CaOx crystals appear. When the concentrations of Ca2+ and Ox2- ions are 1.20, 0.80, 0.60, 0.30 and 0.15 mmol/L in the healthy urine, the average sizes of calcium oxalate crystallites are 9.5 X 6.5, 20.0 X 13.5 and 15.0 jj,m X 10.0 jj,m, respectively, for the former three samples after 6 d crystallization. No crystal appears even after 30 d crystallization for the samples of concentrations of 0.30 and 0.15 mmol/L due to their low supersaturations. The results theoretically explain why the probability of stone forming is clinically not in direct proportion to the concentrations of Ca2+ and Ox2- ions. Laser scattering technology also confirms this point. The reason why healthy human has no risk of urinary stone but stone-formers have is that there are more urinary macromolecules in healthy human urines than that in stone-forming urines. These macromolecules may control the transformation in CaOx crystal structure from monohydrate cal-cium oxalate (COM) to dihydrate calcium oxalate (COD). COD has a weaker affinity for renal tubule cell membranes than COM. No remarkable effect of the crystallization time is observed on the crystal morphology of CaOx. All the crystals are obtuse hexagon. However, the sizes and the number of CaOx crystals can be affected by the crystallization time. In the early stage of crystalli-zation (1-6 d), the sizes of CaOx crystals increase and the number of crystal particles changes little as increasing the crystallization time due to growth control. In the middle and late stages (6-30 d), the number of crystals increases markedly while the growth rate changes little due to the nucleation control.  相似文献   

8.
Surface Composition, Solubility, and the Ion Activity Product of Calcite in Solutions with Auxiliary Ions Using the method of simultaneous ion and isotope exchange the chemical composition of the surface layer of calcite powder in equilibrium with solutions of varying Me/Ca molar ratios is determined (Me = Mg2+, Co2+, Ni2+, and Fe2+ ions). The ion exchange isotherms show a marked bend in the surface reactivity when a surface molar ration of ~1 and ~3 is reached. The solubility of calcite initially decreases on the addition of Co2+ or Ni2+ ions to the solution whereas it increases in the presence of Mg2+ or Fe2+ ions. The activity product of the pseudo compound, CaxMe(1–x)CO3, decreases in the Ni2+, Co2+ or Fe2+ exchange experiments, however, it increases considerably in those with Mg2+ ions.  相似文献   

9.
We report the effect of Mg+2 substitution (by Zn+2) on crystallization kinetics, microstructure, thermal and mechanical properties of boroaluminosilicate glass. Zn2+ was selected for Mg2+ on the basis of similar ionic radius in six coordination system (Mg2+∼0.72 Å, Zn2+∼0.75 Å). The melt-quenched glasses with SiO2–(1 − x) MgO–Al2O3–K2O–B2O3–MgF2 (BPAS)/x ZnO system, have been investigated to establish the effect of Zn+2/Mg+2 ratios. It is found that the density of BPAS glass without zinc content is 2.52 g/cm3 and increased linearly on substitution of Mg2+ by 5–32 mol% ZnO. Tg and Td of BPAS glass initially increased on adding 5 mol% ZnO and then decreased on further addition. From DSC study, it is found that the crystallization exotherm changes significantly in the temperature range 750–1000 °C, where different crystalline phases are formed, and the activation energy of crystallization (EC) varies in the range of 254–388 kJ/mol. The crystalline phases formed in opaque BPAS glass-ceramic, derived by controlled heat treatment at 800 and 1050 °C (4 h), are identified as fluorophlogopite [KMg3(AlSi3O10)F2] mica and willemite (Zn2SiO4) by XRD technique, and confirmed by FTIR spectroscopy. The change of crystallization phenomena varying Zn+2/Mg+2 ratios correspond to significant microstructural change. A wide range of thermal expansion (CTE) values are obtained for the BPAS glasses and corresponding glass-ceramics. CTE (50–500 °C) of BPAS glass without zinc content is 7.76 × 10−6/K, and decreased sequentially on increasing Zn+2/Mg+2 ratio. The density of glass-ceramics after heating at 800 and 1050 °C increased linearly with increasing Zn+2 substitution for Mg+2. Microhardness of the BPAS glasses is in the range of 4.26–6.15 GPa and found to be increased to 4.58–6.78 GPa after crystallized at 1050 °C.  相似文献   

10.
The effects of seven carboxylic acids on calcite formation in the presence of Mg2+ ions, whose molar concentration ratio Mg2+/Ca2+ = 0.5 exclusively induced aragonite precipitation in the absence of carboxylic acids, were studied using a double diffusion technique. The presence of carboxylic acids, acrylic acid, maleic acid, tartaric acid, malonic acid, malic acid, succinic acid, and citric acid in the gel medium favored the formation of magnesian calcite relative to the amount of the additives. Induction time and the positions of the first precipitation were measured to analyze the behavior of crystallization based on the equivalency rule. The formation of magnesian calcite was also studied with the help of Avrami's equation (solid-state model for transformation). The results of applying this equation suggested that aragonite transformed into calcite through a solid-to-solid process. The formation of magnesian calcite was interpreted as the following process: aragonite nuclei, formed owing to Mg2+ ions at the initial stage of CaCO3 crystallization, transformed into calcite nuclei through a solid-to-solid process while their growth was inhibited by the adsorption of carboxylic acids. The magnesian calcite crystals grew on crystal seeds of calcite formed from aragonite nuclei. Copyright 1999 Academic Press.  相似文献   

11.
Conducting polymers are interesting materials of technological applications, while the use of polymers as additives controlling crystal nucleation and growth is a fast growing research field. In the present article, we make a first step in combining both topics and report the effect of conducting polymer derivatives, which are based on carboxylated polyanilines (c-PANIs), on in vitro CaCO3 crystallization by the Kitano and gas diffusion method. This is the first example of the mineralization control of CaCO3 by a rigid carboxylated polymer. Both the concentration of c-PANI and the presence of carboxylate groups have a strong influence on the CaCO3 crystallization behavior and crystal morphology. X-ray diffraction (XRD) analysis shows crystalline calcite particles confirmed by FTIR spectra. pH and Ca2+ measurements during CaCO3 crystallization utilizing the Kitano and a constant-pH approach show a defined nucleation period of CaCO3 particles. The measurements allow for the calculation of the supersaturation time development, and the kinetic data can be combined with time-dependent light microscopy. The presence of c-PANIs delays the time of nucleation indicative of calcite nucleation inhibition. Microscopy illustrates the morphologies of CaCO3 crystals at all crystallization stages, from homogeneous spherical amorphous CaCO3 (ACC) particles corresponding to the first steps of crystallization to transition stage calcite crystals also involving a dissolution-recrystallization process in a late stage of crystallization. The data show that it is not possible to conclude the crystallization mechanism even for a very simple additive controlled crystallization process without time-resolved microscopic data supplemented by the analysis of the species present in the solution. Finally, fluorescence analysis indicates that conducting polymer derivatives can be incorporated into precipitated calcite particles. This gives rise to CaCO3 particles with novel and interesting optical properties.  相似文献   

12.
The growth of calcium carbonate seed crystals (calcite) is strongly inhibited by the presence of phosphate ions. The kinetics of crystal growth were followed potentiometrically using a calcium ion-selective electrode or through the use of a pH electrode. The study of different variables on such a process was carried out with the aim of developing kinetic methods to determine phosphate ions (50–400 ng ml?1). The selectivity and sensitivity of these processes allow the application of crystallization reactions to the determination of phosphate in human urine.  相似文献   

13.
We report the preparation of a new monomethylitaconate grafted polymethylsiloxane (CO2H-PMS) copolymer and its effect as template for crystal growth of CaCO3. The in vitro crystallization of CaCO3 was carried out using the gas diffusion method at different pH values at room temperature for 24 h. The CO2H-PMS was prepared using polydimethylsiloxane-co-methylhydrogensiloxane (PDMS-co-PHMS), obtained through cationic ring opening polymerization, from cyclic monomers and monomethyltaconate (MMI) via hydrosilylation reactions with platinum complex as catalyst. FTIR results are in an agreement with the proposed template structure and confirmed that the hydrosilylation was complete. Experimental results from pH values and SEM analysis showed that the carboxylate groups of CO2H-PMS alter the nucleation, growth and morphology of CaCO3 crystals. SEM revealed single-truncated (ca. 5 μm) modified at pH 7-9, aggregated-modified (ca. 20 μm) at pH 10-11, and donut-shaped crystals at pH 12. These morphologies reflect the electrostatic interaction of carboxylic moieties with Ca2+ modulated by CO2H-PMS adsorbed onto the CaCO3 particles. EDS confirmed the presence of Si atoms on the crystals surface. XRD analysis showed the existence of only two polymorphs: calcite and vaterite revealing a selective control of CaCO3 polymorphisms. In summary, the use of grafted polymethylsiloxane template offer a good alternative for polymer controlled crystallization and a convenient approach for understanding the biomineralization process useful for the design of novel materials.  相似文献   

14.
CIT additives are active in crystal morphology modification at relatively high concentration. Once agarose gel is simultaneously introduced, the curved morphological feature of calcite crystal emerges at a much lower concentration of CIT additives.  相似文献   

15.
The rates of growth of polyethylene single crystals grown from dilute solution in hexadecane and tetradecanol have been measured over the temperature range Tc = 98–120°C by following the change in turbidity during crystallization of a suspension of crystals of known shape and final size. The rates decrease similarly with Tc in each solvent, but for a given supercooling crystals grow much faster in tetradecanol where the corresponding crystallization temperature is higher. Similarly, the rates are much higher in hexadecane than those previously reported from xylene at equivalent supercoolings but lower Tc. Changes in the corresponding crystal morphologies as Tc is raised are quantified in terms of the axial ratio and the degree of curvature of the nominally {100} faces, both of which increase with Tc. The results can be interpreted as showing a transition from regime I to regime II growth in both solvents, which agrees both qualitatively and quantitatively with the predictions of the nucleation-based kinetic theories. Such a transition has never before been reported for solution crystallization. Using this analysis, reasonable values are obtained for the crystal side-surface energy σ of 7.4–7.5 erg cm?2 and for the regime I substrate length L of 0.14 μm. No correlation is found between crystal morphology and growth rate and there are no discontinuous changes in morphology at the proposed transition points. The occurrence of curved crystal edges raises the fundamental issue of how to reconcile noncrystallographic growth surfaces with nucleation-controlled growth. A new approach to polymer crystal growth based on equilibrium surface roughening, which does not require nucleation, is therefore very pertinent in this respect and this is discussed.  相似文献   

16.
There is not a consistent view about the mechanism of wettability alteration during low salinity water flooding. This paper highlights extensive wettability studies to investigate the wettability alteration on mineralogically different carbonates. Contact angle measurements were conducted to characterize wettability changes quantitatively. The results clearly revealed that wettability of carbonate rock surfaces can be altered to a more water-wet condition by lowering water salinity. The trend of the maximum change of contact angle (MCCA) variation with dolomite/calcite content in the rock is fairly linear under the same salinity, which demonstrates that carbonate minerals can affect rock wettability in a way. Also, the higher calcite content in the rock, the greater MCCA, i.e. the stronger effect of LSWF. Besides, the sensitivity of rock wettability to minerals is different under different salinity conditions. When the salinity is in the range of 2384.6?~?4769.2?mg/L, rock wettability is most sensitive to minerals. The analysis of the effect of ion composition showed that the effect of Ca2+ on wettability alteration is greater than that of Mg2+ at room temperature, and with the increase of the content of calcite in the rock, the effect of Ca2+ is more pronounced than that of Mg2+.  相似文献   

17.
以模拟软体动物珍珠层的周期性基质控制形成过程制备仿生层状复合材料. 将聚苯乙烯磺酸钠(PSS)与聚二烯二甲基氯化铵(PDAC)用逐层浸渍的方法使其组装成多层膜, 用于诱导过饱和溶液中CaCO3的结晶, 详细研究了膜紫外吸收随组装层数增加的线性变化. 扫描电镜和X射线衍射表征了晶体的形貌和结构. (PDAC/PSS)15PDAC膜诱导获得的CaCO3晶体为六面体结构, 晶体尺寸为30~40 μm; (PDAC/PSS)15膜诱导CaCO3结晶, 可以在膜表面获得形貌与珍珠层非常相似的CaCO3晶体, 结晶10 h获得的晶片结构呈规则的六边形, 片尺寸约为10~20 μm. X射线衍射结果表明两种晶体的晶格结构与天然珍珠层差异明显, 说明静电作用为晶体形貌的主控因素之一, 但不是晶格结构的决定因素. 复合材料断面电镜照片表明其为层状结构.  相似文献   

18.
Besides studies on the mineralization process, research on the demineralization of minerals provides another way to understand the crystallization mechanism of biominerals and fabricate crystals with complicated morphologies. The formation of ordered arrays of c‐axis‐oriented calcite microneedles with a tri‐symmetric structure and lengths of more than 20 μm was realized on a large scale for the first time through anisotropic dissolution of calcite substrates in undersaturated aqueous solution in the presence of ammonium salts. The lengths and the aspect ratios of the calcite microneedles can be tuned by simply changing the concentrations of the ammonium salts and the dissolution time. The shape of the transverse cross sections of the calcite microneedles obtained in the presence of NH4Cl and NH4Ac is almost regularly triangular. The tri‐symmetric transverse cross‐section geometry of the calcite microneedles could be attributed to the tri‐symmetric feature of rhombohedral calcite atomic structures, the synergetic interactions between electrostatic interaction of ammonium ions and dangling surface carbonate groups, and the ion incorporation of halide ions.  相似文献   

19.
DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stability in low‐Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+–DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure‐dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low‐micromolar range.  相似文献   

20.
The objective of this work was to synthesize a sulfonated polymethylsiloxane (S-PMS) by hydrosilylation and sulfonation reactions and to investigate their effect on the growth of CaCO3 crystals using a gas diffusion method as a function of concentration, pH, and time. The result of IR and NMR shows good agreement with all proposed structures. Scanning electron microscopy images of CaCO3 showed small well-defined calcite-forming short piles (ca 5 μm) and elongated calcite (ca 20 μm) crystals. The morphology of the resultant CaCO3 crystals reflects the electrostatic interaction of sulfonate moieties and Ca2+ modulated by S-PMS adsorbed onto the CaCO3 surface. X-ray diffraction confirmed the crystalline calcite polymorph. Energy dispersive spectroscopy of CaCO3 crystals determined the presence of Si atoms from S-PMS. The use of PMS chemistry as an organic additive for the production of CaCO3 particles is a viable approach for studying the biomineralization and could be useful for the design of novel materials with desirable shape and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号