首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Development of tough hydrogels has greatly expanded their applications as load-bearing materials. However, the elastic modulus of tough hydrogels is usually lower than 1 MPa. It remains a challenge to design tough hydrogels with high modulus. We report here a series of tough double-network (DN) hydrogels with ultrahigh elastic modulus (up to 200 MPa) by forming robust hydrogen bonds between the first poly(acrylic acid) network and the second poly(N-isopropyl acrylamide) network. The dense cooperative hydrogen bonds greatly reduce the segmental mobility and thus improve the rigidity of gel matrix. Owing to the dynamic nature of hydrogen bonds, the modulus of hydrogels is strongly influenced by temperature and pH, affording the gels shape memory property. The strategy by forming robust noncovalent bonds between interpenetrating networks should be applicable to other systems for designing tough and versatile hydrogels with diverse promising applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1281–1286  相似文献   

2.
A continuum damage model was developed to describe the finite tensile deformation of tough double-network (DN) hydrogels synthesized by polymerization of a water-soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading-unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3-sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto-plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.  相似文献   

3.
Double network (DN) hydrogels as one kind of tough gels have attracted extensive attention for their potential applications in biomedical and load-bearing fields. Herein, we import more functions like shape memory into the conventional tough DN hydrogel system. We synthesize the PEG-PDAC/P(AAm-co-AAc) DN hydrogels, of which the first network is a well-defined PEG (polyethylene glycol) network loaded with PDAC (poly(acryloyloxyethyltrimethyl ammonium chloride)) strands, while the second network is formed by copolymerizing AAm (acrylamide) with AAc (acrylic acid) and cross-linker MBAA (N, N'-methylenebisacrylamide). The PEG-PDAC/P(AAm-co-AAc) DN gels exhibits high mechanical strength. The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m3, respectively. Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network, the PEG-PDAC/P(AAm-coAAc) DN hydrogels use P(AAm-co-AAc), a weak polyelectrolyte, as the second network. The AAc units serve as the coordination points with Fe3+ ions and physically crosslink the second network, which realizes the shape memory property activated by the reducing ability of ascorbic acid. Our results indicate that the high mechanical strength and shape memory properties, probably the two most important characters related to the potential application of the hydrogels, can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.  相似文献   

4.
Alginate hydrogels are polysaccharide biopolymer networks widely useful in biomedical and food applications. Here, we report nonlinear mechanical responses of ionically crosslinked alginate hydrogels captured using large amplitude oscillatory shear experiments. Gelation was performed in situ in a rheometer and the rheological investigations on these samples captured the strain‐stiffening behavior for these gels as a function of oscillatory strain. In addition, negative normal stress was observed, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with the applied strain amplitude and can exceed that of the shear stress at large‐strain. Fitting a constitutive relationship to the stress‐strain curves reveals that the mode of deformation involves stretching of the alginate chains and bending of both the chains and the junction zones. The contribution of bending increases near saturation of G blocks as Ca2+ concentration was increased. The results presented here provide an improved understanding of the deformation behavior of alginate hydrogels and such understanding can be extended to other crosslinked polysaccharide networks. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1767–1775  相似文献   

5.
Previous studies on hydrogels crosslinked by acrylated PEO99–PPO65–PEO99 triblock copolymer (F127DA) micelles demonstrate outstanding strength and toughness, which is attributed to the efficient energy dissipation through the hydrophobic association in the micelles. The current study further focuses on how the solvent property affects the structures and the mechanical properties of F127DA micelle crosslinked polyacrylamide gels. Binary solvents comprised of dimethyl sulfoxide (DMSO) and water are used to adjust the polymer/solvent interactions, which consequently tune the conformations of the polymer chains in the network. The presence of DMSO significantly decreases the strength but increased the stretchability of the gels, whereas the overall tensile toughness remained unchanged. In situ small‐angle X‐ray scattering measurements reveal the deformation of micelles along with the stretching direction. A structure evolution mechanism upon solvent change is proposed, according to the experimental observations, to explain influence of solvent quality on the mechanical properties of the micelle‐crosslinked gels. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 473–483  相似文献   

6.
Tough polymer hydrogels have great potential applications in soft actuators, artificial muscles, tissue engineering, and so forth. To improve the strength and toughness of hydrogels, numerous strategies have been developed to integrate efficient energy dissipation mechanisms into the hydrophilic networks. Among them, the use of macro-crosslinkers to replace conventional chemical ones has become promising to develop tough hydrogels. Polymer colloids—including nano-/microparticles, nano-/microgels, hydrophobic associates, and block copolymer assemblies—have been employed in literature as multi-functional macro-crosslinkers that link polymer chains through covalent bonds or noncovalent interactions. The dislocation, deformation, desociation, and rupture of polymer colloids upon loadings are the major mechanisms to dissipate energy. This article provides a comprehensive account of most recent progresses on tough hydrogels crosslinked by polymer colloids, and explores the toughening mechanisms. It aims to inspire novel designs of tough hydrogels with multi-functionalities. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1336–1350  相似文献   

7.
Interpenetrating polymer network (IPN) hydrogels have been fabricated through a facile one‐pot approach from tetra/bifunctional telechelic macromonomers with epoxy, amine, azide, and alkyne groups by orthogonal double click reactions: epoxy‐amine reaction and copper‐catalyzed azide‐alkyne cycloaddition. Both the crosslinked networks are simultaneously constructed in water from the biocompatible poly (ethylene glycol)‐based macromonomers. The crosslinking density of each network was finely tuned by the macromonomer structure, permitting control of network molecular weights between crosslinks of the final gels. Compared to corresponding single network gels, the IPN gels containing both tightly and loosely crosslinked networks exhibited superior mechanical properties with shear moduli above 15 kPa and fracture stresses over 40 MPa. The synthetic versatility of this one‐pot approach will further establish design principles for the next generation of robust hydrogel materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1459–1467  相似文献   

8.
The utility of thermoresponsive hydrogels, such as those based on poly(N‐isopropylacrylamide) (PNIPAAm), is severely limited by their deficient mechanical properties. In particular, the simultaneous achievement of high strength and stiffness remains unreported. In this work, a thermoresponsive hydrogel is prepared having the unique combination of ultrahigh compressive strength (≈23 MPa) and excellent compressive modulus (≈1.5 MPa). This is accomplished by employing a double network (DN) design comprised of a tightly crosslinked, highly negatively charged 1st network based on poly(2‐acrylamido‐2‐methylpropane sulfonic acid (PAMPS) and a loosely crosslinked, zwitterionic 2nd network based on a copolymer of thermoresponsive NIPAAm and zwitterionic 2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH). Comparison to other DN designs reveals that this PAMPS/P(NIPAAm‐co‐MEDSAH) DN hydrogel's remarkable properties stem from the intra‐ and internetwork ionic interactions of the two networks. Finally, this mechanically robust hydrogel retains the desirable thermosensitivity of PNIPAAm hydrogels, exhibiting a volume phase transition temperature of ≈35 °C.  相似文献   

9.
Tough hydrogels have great potentials in soft robotics, artificial muscles, tissue replacement, and so on. Here we introduce novel tough hydrogels crosslinked by triblock copolymer (F127DA) micelles and metal coordination. The gels showed outstanding tensile strength (∼1–11 MPa), toughness (∼4–32 MJ m−3), and excellent self‐recovery properties (∼56.8–87.2% toughness recovery in 9 min at room temperature). The mechanical and self‐recovery properties could be manipulated by varying contents of micelles and/or COO groups. Dynamic mechanical analysis of the hydrogels revealed apparent activation energy and relaxations for both physical interactions. In situ small‐angle X‐ray scattering measurements on hydrogels upon stretching revealed micelle deformations. XPS measurements on hydrogels before and after stretching revealed significant changes in the binding energy of Fe3+ ions in the gels, suggesting the rupture of coordination bonds. The experimental results strongly suggest a synergistic effect from the micelle‐crosslinking and Fe3+–COO coordination on the strength, toughness, and self‐recovery of the hydrogels. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 865–876  相似文献   

10.
Double-network hydrogels were prepared using well-defined first networks comprising interconnected amphiphilic “in-out” star copolymers synthesized via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization, and second networks based on a photopolymerized mixture of acrylamide and N,N′-methlyenebisacrylamide. All first and double-network hydrogels were characterized in terms of their aqueous degrees of swelling and mechanical properties in compression. The most hydrophobic first and double-network hydrogels exhibited the best mechanical properties, which may be attributed to their low aqueous swelling degrees and good mesoscale organization in water as revealed using small-angle neutron scattering (SANS) which showed that the size of the formed hydrophobic domains could be controlled by the polymer conetwork structure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2161–2174  相似文献   

11.
A facile synthetic strategy was developed for the preparation of thermoresponsive nanocomposite hydrogels comprising crosslinked chitosan (CS) networks and poly(N‐isopropylacrylamide) [p(NIPAAm)] nanogels. First, thermoresponsive p(NIPAAm) nanogels were synthesized via emulsion polymerization. The p(NIPAAm) nanogels were introduced into methacrylamide CS (MC) solution and the free‐radical initiated crosslinking reaction of MC produced nanogel‐embedded hydrogels. The last step involves the loading of the antibacterial model drug levofloxacin (LFX) into the prepared nanocomposite hydrogels by allowing the preformed hydrogels to swell to equilibrium in the drug's aqueous solution. The integration of p(NIPAAm) nanogel into CS networks facilitates thermoresponsive release of LFX with an enhancement of the drug‐loading capacity within the hydrogel. Notably, thermoresponsive drug‐release was achieved without unwarranted modification of the hydrogel's dimension and shape, although an increase in temperature caused the collapse of the p(NIPAAm) nanogels. The thermoresponsive property of the investigated nanocomposite hydrogel is beneficial and may offer broad opportunities for drug temperature‐triggered release for clinical applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1907–1914  相似文献   

12.
Hydrogels based on n‐alkyl methacrylate esters (n‐AMA) of various chain lengths, acrylic acid, and acrylamide crosslinked with 4,4′‐di(methacryloylmino)azobenzene were prepared. Swelling kinetics and the mechanism of degradation in vitro of the hydrogels as well as the mutual relations between both were studied by the immersion of slabs in buffered solutions at pH 7.4. The diffusion of water into the slabs was discussed on the stress‐relaxation model of polymer chains. The results obtained agreed well with Schott's second‐order diffusion kinetics. The gels are degradable by anaerobes in the colon. The results obtained showed that the degradation of networks proceeded via a pore mechanism. The factors influencing the swelling and degradation of the gels include the degree of crosslinking, the lengths of the n‐AMA side chains, and the composition. These hydrogels have the potential for colon‐specific drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3128–3137, 2001  相似文献   

13.
In nature, plants or animals change their geometric shapes and hence realize different functions or movements. Inspired by the shape changes of plants and animals, several hydrogels that can change their geometric shapes upon external stimuli have been developed. This article provides a brief overview of shape changing hydrogels. First, two strategies to realize the shape changes of hydrogels, that is, preparing hydrogels with inhomogeneous structures and applying inhomogeneous stimuli onto homogeneous hydrogels, are discussed. Then, external stimuli that can actuate the shape changes of the stimuli-responsive hydrogels are presented. The applications of shape changing hydrogels such as soft machines, soft robotics, drug carriers, microfluidic valves, and sensors have been provided in third part. Finally, we offer our perspective on open challenges and future areas of interest for the shape changing hydrogel actuators. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1314–1324  相似文献   

14.
Introduction of soft filler in a hard body, which is one of the common toughening methods of hard polymeric materials, was applied for further toughening of robust double network (DN) hydrogels composed of poly(2‐acrylamido‐2‐methylpropanesulfonic acid) gels (PAMPS gels) as the first component and polyacrylamide (PAAm) as the second component. The fracture energy of the DN gels with the void structure (called void‐DN gels) became twice when the volume fraction of void was 1–3 vol % and the void diameter was much larger than the Flory radius of the PAAm chains. Such toughening was induced by wider range of internal fracture of the PAMPS network derived from partial stress concentration near void structure. Considering the mechanical tests and the dynamic light scattering results, it is implied that the absence of the load‐bearing PAAm structure inside the void is important for the toughening. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1246–1254, 2011  相似文献   

15.
Hydrogen bonds are known to play an important role in prescribing the mechanical performance of certain hydrogels such as polyether-based polyurethanes. The quantitative contribution of hydrogen bonds to the toughness of polymer networks, however, has not been elucidated to date. Here, a new physical model is developed to predict the threshold fracture energies of hydrogels physically crosslinked via hydrogen bonds. The model is based on consecutive and sequential dissociation of hydrogen-bonded crosslinks during crack propagation. It is proposed that the scission of hydrogen bonds during crack propagation allows polymer strands in the deformation zone to partially relax and release stored elastic energy. The summation of these partial chain relaxations leads to amplified threshold fracture energies which are 10–45 times larger than those predicted by the classical Lake–Thomas theory. Experiments were performed on a hydrophilic polyurethane hydrogel where urea additions were used to control the density of hydrogen bonds. The measured fracture energies were in good agreement with the calculated values. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1287–1293  相似文献   

16.
We here describe new double network (DN) hydrogels with excellent mechanical strength and high sensitivity to pH changes. The first polymer network has a bottle brush structure and is formed from oligo‐monomers of poly(ethylene glycol) methyl ether methacrylate (PEGMA). Poly(acrylic acid) (PAA) is used as the second network. This double network features strong intermolecular interactions between the neutral poly(ethylene glycol) (PEG) side chains of PPEGMA and the non‐ionized carboxylic acid groups of the PAA second network. When immersed in solutions with a pH below ~4 the DN hydrogels have a low swelling ratio and are opaque as a result of solvent‐polymer phase separation driven by the formation of dense hydrogen‐bonded clusters. The compression strength (~8 MPa) is at least 14 times higher than the analogous single networks. When immersed in solutions with a pH >4, the hydrogels are transparent and exhibit a high swelling ratio with a compression strength of ~1 MPa. The PEG side chain length can be readily controlled without greatly altering the overall DN topology by choosing PEGMA monomers having different PEG side chain lengths. Longer PEG side branches give higher compression and tensile strengths at pH <4 when hydrogen bonded clusters form. The robust nature of these DN gels over a wide pH range may be useful for applications such as artificial muscles and controlled release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

17.
PVA改性PAMPS-PAM超高力学性能双网络水凝胶的制备   总被引:2,自引:0,他引:2  
田帅  单国荣  王露一 《高分子学报》2010,(10):1175-1179
采用紫外光引发聚合制备了聚乙烯醇(PVA)改性的聚(2-丙烯酰胺基-2-甲基丙磺酸)-聚丙烯酰胺(PAMPS-PAM)双网络(DN)水凝胶.测定并比较了PVA改性前后PAMPS-PAM双网络水凝胶的溶胀动力学;通过扫描电子显微镜(SEM)观察了单网络水凝胶的结构;测定PVA改性前后PAMPS-PAM双网络水凝胶的压缩及拉伸性能.结果表明,经PVA改性后的PAMPS-PAM双网络水凝胶有较高的溶胀比;0.82%PVA用量的PAMPS-PAM双网络水凝胶在90%压缩形变率下仍保持完整、最大拉伸应力达到0.5 MPa,大幅提高PAMPS-PAM双网络水凝胶的力学性能.  相似文献   

18.
In this study, fracture toughness of nanocomposite hydrogels is quantified, and active mechanisms for dissipation of energy of nanocomposite hydrogels are ascertained. Poly(N,N‐dimethylacrylamide) nanocomposite hydrogels are prepared by in situ free radical polymerization with the incorporation of Laponite, a hectorite synthetic clay. Transmission electron microscopy proves exfoliation of clay platelets that serve as multifunctional crosslinkers in the created physical network. Extraordinary high fracture energies of up to 6800 J m?2 are determined by the pure shear test approach, which shows that these soft and stretchable hydrogels are insensitive to notches. In contrast to single‐ and double‐network hydrogels, dynamic mechanic analysis and stress relaxation experiments clarify that significant viscoelastic dissipation occurs during deformation of nanocomposite hydrogels. Similar to double‐network hydrogels, crack tip blunting and plastic deformation also contribute to the observed massive fracture energies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1763–1773  相似文献   

19.
Polyhedral oligomeric silsesquioxane hybrid temperature and pH double‐responsive hydrogels with organic–inorganic co‐crosslinked networks are synthesized by in situ, free‐radical polymerization of N‐isopropylacrylamide and dimethylaminoethyl methacrylate in the presence of both organic crosslinker N,N′‐methylenebis(acrylamide) (BIS) and inorganic crosslinker octavinyl polyhedral oligomeric silsesquioxane (OvPOSS) in tetrahydrofuran media. The resulting hydrogels (OR‐OvP gels) display obvious temperature and pH double responsiveness, OvPOSS particles dispersed in polymer make a dominant effect on the properties of gels. With the increase of OvPOSS, the aggregation of particles on nano‐ or microscale happens and causes a considerable change on the properties of gels, such as the lower critical solution temperature and better compression strength. Specially, the interconnected microporous structure of gels ascribed to the microphase separation results in faster deswelling rate, which makes the gel become attractive. Besides, the crosslink by BIS intensifies the heterogeneity of gels significantly, which could also be used to adjust the properties of gels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1494–1504  相似文献   

20.
The rheological behavior of two hydrogels, poly(sodium acrylate) and polyacrylamide gels, synthesized in the presence of the same crosslinking agent molecule, N,N′-methylene bis-acrylamide, has been investigated. The variation of the norm of the complex shear modulus |G*| vs. the monomer concentration (sodium acrylate or acrylamide) exhibited a different power law, depending on the nature of the monomer molecule. This discrepancy was ascribed to the influence of the properties of the monomer molecules on the crosslinked structure of the gelified networks. The analysis of the experimental results have allowed the suggestion that the elasticity exponent value was dependent on the length and on the conformation of the polymer chains connecting the junctions points of the network. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2535–2541, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号