首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Nitrogenases are the only enzymes known to reduce molecular nitrogen (N2) to ammonia (NH3). By using methyl viologen (N ,N ′‐dimethyl‐4,4′‐bipyridinium) to shuttle electrons to nitrogenase, N2 reduction to NH3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H2) results in an enzymatic fuel cell (EFC) that is able to produce NH3 from H2 and N2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H2 /N2 EFCs, which resulted in the formation of 286 nmol NH3 mg−1 MoFe protein, corresponding to a Faradaic efficiency of 26.4 %.  相似文献   

5.
The addition of reactive carbanions to (η4‐1,3‐diene)Fe(CO)3 complexes at ?78 °C and 25 °C produced putative homoallyl and allyl anion complexes, respectively. Reaction of the reactive intermediates with 2‐(phenylsulfonyl)‐3‐phenyloxaziridine afforded nucleophilic substituted (η4‐1,3‐diene)Fe(CO)3 complexes.  相似文献   

6.
7.
8.
Rapid synthesis of 1,2,3,4-tetrahydropyrimidin-2-ones (THPO) from aromatic aldehydes, β-ketoester and urea (or thiourea) using zinc sulfamate as the catalyst under microwave irradiation was described here. Compared with the classical Biginelli reaction, this new method consistently has the advantages of good yields (76%-96%), short reaction time (3-15 min), no corrosion to equipments, ease of manipulation, and low cost catalyst.  相似文献   

9.
First‐row two‐coordinate complexes are attracting much interest. Herein, we report the high‐yield isolation of the linear two‐coordinate iron(I) complex salt [K(L)][Fe{N(SiMe3)2}2] (L=18‐crown‐6 or crypt‐222) through the reduction of either [Fe{N(SiMe3)2}2] or its three‐coordinate phosphine adduct [Fe{N(SiMe3)2}2(PCy3)]. Detailed characterization is gained through X‐ray diffraction, variable‐temperature NMR spectroscopy, and magnetic susceptibility studies. One‐ and two‐electron oxidation through reaction with I2 is further found to afford the corresponding iodo iron(II) and diiodo iron(III) complexes.  相似文献   

10.
11.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

12.
13.
A new general concept for α,β‐unsaturated acyl ammonium catalysis is reported that uses p‐nitrophenoxide release from an α,β‐unsaturated p‐nitrophenyl ester substrate to facilitate catalyst turnover. This method was used for the enantioselective isothiourea‐catalyzed Michael addition of nitroalkanes to α,β‐unsaturated p‐nitrophenyl esters in generally good yield and with excellent enantioselectivity (27 examples, up to 79 % yield, 99:1 er). Mechanistic studies identified rapid and reversible catalyst acylation by the α,β‐unsaturated p‐nitrophenyl ester, and a recently reported variable‐time normalization kinetic analysis method was used to delineate the complex reaction kinetics.  相似文献   

14.
A new page in the phase book : The metastable nitride β‐Ca3N2, the synthesis, crystal structure (see picture), and physical properties of which are reported, is an isotype of corundum (α‐Al2O3). Vacancies in the crystal structure of β‐Ca3N2 are discussed by using full‐potential local orbital methods and taking into account both the physical properties and the density of states.

  相似文献   


15.
7,8‐Dehydropurpurin has attracted much attention owing to the dual 18π‐ and 20π‐electron circuits in its macrocyclic conjugation. The two‐fold Pd‐catalyzed [3+2] annulation of meso‐bromoporphyrin with 1,4‐diphenylbutadiyne furnished 7,8‐dehydropurpurin dimers. The 8a,8a‐linked dimer displays a red‐shifted and enhanced absorption band in the NIR region and a small electrochemical HOMO–LUMO band gap as a consequence of efficient conjugation between the two coplanar 7,8‐dehydropurpurin units. Treatment of this dimer with N‐bromosuccinimide in chloroform and ethanol gave β‐to‐β vinylene‐bridged porphyrin dimers. Owing to the highly constrained conformations, these dimers exhibit perturbed absorption spectra, small Stokes shifts, and high fluorescence quantum yields.  相似文献   

16.
17.
18.
Photo–thermo catalysis, which integrates photocatalysis on semiconductors with thermocatalysis on supported nonplasmonic metals, has emerged as an attractive approach to improve catalytic performance. However, an understanding of the mechanisms in operation is missing from both the thermo‐ and photocatalytic perspectives. Deep insights into photo–thermo catalysis are achieved via the catalytic oxidation of propane (C3H8) over a Pt/TiO2‐WO3 catalyst that severely suffers from oxygen poisoning at high O2/C3H8 ratios. After introducing UV/Vis light, the reaction temperature required to achieve 70 % conversion of C3H8 lowers to a record‐breaking 90 °C from 324 °C and the apparent activation energy drops from 130 kJ mol?1 to 11 kJ mol?1. Furthermore, the reaction order of O2 is ?1.4 in dark but reverses to 0.1 under light, thereby suppressing oxygen poisoning of the Pt catalyst. An underlying mechanism is proposed based on direct evidence of the in‐situ‐captured reaction intermediates.  相似文献   

19.
20.
An unprecedented synthesis of N‐heteroaromatics from biaryl aldehydes and NH3 through reagent‐free C−H/N−H cross‐coupling has been developed. The electrosynthesis uses NH3 as an inexpensive and atom‐economic nitrogen donor, requires no oxidizing agents, and allows efficient and regioselective access to a wide range of phenanthridines and structurally related polycyclic N‐heteroaromatic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号