共查询到20条相似文献,搜索用时 15 毫秒
1.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(24):6892-6896
Owing to its versatility in synthetic chemistry, TPB (tris[2‐diisopropylphospino)phenyl]borane) is a very important frustrated Lewis Pair. The unusual stability of the neutral radical (TPB)Cu has been related to the presence of a one‐electron B−Cu bond. Herein we show, through the use of different computational chemistry methods, that the existence and nature of this kind of A⋅⋅⋅M bond (A=donor atom, M=transition metal) depends on the surrounding chemical structure, and can be genuine one‐electron sigma bonds only if appropriate metal ligands (Y), able to trap the charge in the desired region, are chosen. This ability is modulated by the subtle balance between the electronegativity of the different atoms along the A⋅⋅⋅M⋅⋅⋅Y bond paths. Most importantly, contrary to many TPB complexes in which boron acts as a Lewis acid, in one‐electron‐bond‐containing structures boron behaves as a Lewis base. 相似文献
2.
Xiaoming Jie Constantin G. Daniliuc Robert Knitsch Michael Ryan Hansen Hellmut Eckert Sebastian Ehlert Stefan Grimme Gerald Kehr Gerhard Erker 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(3):892-896
A new six‐membered cyclic frustrated phosphane/borane Lewis pair was liberated from its HB(C6F5)2 adduct by treatment with vinylcyclohexane. The system is an active frustrated Lewis pair that undergoes cycloaddition reactions with suitable π reagents and it splits dihydrogen. At room temperature in solution the new compound is a monomer, however, in the crystal and in solution at low temperature it aggregates to a thermodynamically favoured supramolecular macrocyclic cyclooctamer. 相似文献
3.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(19):5301-5305
Herein we report that a single frustrated Lewis pair (FLP) catalyst can promote the reductive etherification of aldehydes and ketones. The reaction does not require an exogenous acid catalyst, but the combined action of FLP on H2, R‐OH or H2O generates the required Brønsted acid in a reversible, “turn on” manner. The method is not only a complementary metal‐free reductive etherification, but also a niche procedure for ethers that would be either synthetically inconvenient or even intractable to access by alternative synthetic protocols. 相似文献
4.
5.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(5):1385-1390
An N,P‐heterocyclic germylene/B(C6F5)3 Lewis adduct 2 presenting multi‐reactive sites (P/B Lewis pair, germylene, Ge=P π‐bond) is reported. In contrast to classical frustrated Lewis pairs or divalent Group 14 element species, 2 is able to activate two small molecules simultaneously. Of particular interest, 2 reacts with silanes leading to the formation of original cationic germylenes 3 , and can be used as a metal‐free catalyst for selective CO2‐hydrosilylation to H2C(OSiEt3)2. 相似文献
6.
7.
8.
9.
10.
11.
12.
《Angewandte Chemie (International ed. in English)》2017,56(11):3094-3097
An Al/P‐based frustrated Lewis pair (FLP) reacted with PhMgCl by an unexpected transmetalation and formation of a phosphinylvinyl Grignard reagent. This compound is well suited for the transfer of the basic FLP component to other Lewis acidic metal atoms and allowed the generation of a Ga/P and an In/P2 FLP. The Ga FLP showed a behavior different to that of the corresponding Al FLP, the In FLP allowed the chelating coordination of an Au atom by Au−Cl bond activation. 相似文献
13.
How Frustrated Lewis Acid/Base Systems Pass through Transition‐State Regions: H2 Cleavage by [tBu3P/B(C6F5)3] 下载免费PDF全文
We investigate the transition‐state (TS) region of the potential energy surface (PES) of the reaction tBu3P+H2+B(C6F5)3→tBu3P‐H(+)+(?)H?B(C6F5)3 and the dynamics of the TS passage at room temperature. Owing to the conformational inertia of the phosphane???borane pocket involving heavy tBu3P and B(C6F5)3 species and features of the PES E(P???H, B???H | B???P) as a function of P???H, B???H, and B???P distances, a typical reactive scenario for this reaction is a trajectory that is trapped in the TS region for a period of time (about 350 fs on average across all calculated trajectories) in a quasi‐bound state (scattering resonance). The relationship between the timescale of the TS passage and the effective conformational inertia of the phosphane???borane pocket leads to a prediction that isotopically heavier Lewis base/Lewis acid pairs and normal counterparts could give measurably different reaction rates. Herein, the predicted quasi‐bound state could be verified in molecular collision experiments involving femtosecond spectroscopy. 相似文献
14.
15.
16.
17.
Ammasai Karthikeyan Robert Swinton Darious Packianathan Thomas Muthiah Franc Perdih 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(11):985-990
Two novel cocrystals of the N(7)—H tautomeric form of N6‐benzoyladenine (BA), namely N6‐benzoyladenine–3‐hydroxypyridinium‐2‐carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6‐benzoyladenine–DL‐tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6‐benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring‐motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking interactions. 相似文献
18.
Introducing plasmonic metals into semiconductor materials has been proven to be an attractive strategy for enhancing photocatalytic activity in the visible region. In this work, a novel and efficient Ag/Ag2WO4/g‐C3N4 (AACN) ternary plasmonic photocatalyst was successfully synthesized using a facile one‐step in situ hydrothermal method. The composition, structure, morphology and optical absorption properties of AACN were investigated using X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–visible diffuse reflectance spectroscopy, respectively. Photocatalytic performance of AACN was evaluated via rhodamine B and tetracycline degradation. The results indicated that AACN had excellent photocatalytic performance for rhodamine B degradation with a rate constant of 0.0125 min?1, which was higher than those of Ag2WO4 and Ag/Ag2WO4. Characterization and photocatalytic tests showed that the strong coupling effect between the Ag/Ag2WO4 nanoparticles and the exfoliated ultrathin g‐C3N4 nanosheets was superior for visible‐light responsivity and reduced the recombination rate of photogenerated electrons and holes. A proposed mechanism is also discussed according to the band energy structure and the experimental results. 相似文献
19.
Pattiyil Parameswaran Dr. Gernot Frenking Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(35):8807-8816
The equilibrium geometries and bond dissociation energies of 16‐valence‐electron(VE) complexes [(PMe3)2Cl2M(E)] and 18‐VE complexes [(PMe3)2(CO)2M(E)] with M=Fe, Ru, Os and E=C, Si, Ge, Sn were calculated by using density functional theory at the BP86/TZ2P level. The nature of the M? E bond was analyzed with the NBO charge decomposition analysis and the EDA energy‐decomposition analysis. The theoretical results predict that the heavier Group 14 complexes [(PMe3)2Cl2M(E)] and [(PMe3)2(CO)2M(E)] with E=Si, Ge, Sn have C2v equilibrium geometries in which the PMe3 ligands are in the axial positions. The complexes have strong M? E bonds which are slightly stronger in the 16‐VE species 1ME than in the 18‐VE complexes 2ME . The calculated bond dissociation energies show that the M? E bonds become weaker in both series in the order C>Si>Ge>Sn; the bond strength increases in the order Fe<Ru<Os for 1ME , whereas a U‐shaped trend Ru<Os<Fe is found for 2ME . The M? E bonding analysis suggests that the 16‐VE complexes 1ME have two electron‐sharing bonds with σ and π symmetry and one donor–acceptor π bond like the carbon complex. Thus, the bonding situation is intermediate between a typical Fischer complex and a Schrock complex. In contrast, the 18‐VE complexes 2ME have donor–acceptor bonds, as suggested by the Dewar–Chatt–Duncanson model, with one M←E σ donor bond and two M→E π‐acceptor bonds, which are not degenerate. The shape of the frontier orbitals reveals that the HOMO?2 σ MO and the LUMO and LUMO+1 π* MOs of 1ME are very similar to the frontier orbitals of CO. 相似文献
20.
Elham Rajaee Yousef Jahani Mohammad Ali Safarpour Mohammad Rahim Vaseghi 《先进技术聚合物》2011,22(5):724-731
The effects of electron beam irradiation in the nitrogen environment, on chain scission, crosslinking, crystallinity, mechanical performance, and barrier properties of LDPE/PA6/LDPE multi‐layer films were studied. The evaluation of radiation‐induced crosslinking effect by the gel content measurement and Charlesby–Pinner plot suggested more of crosslinking over chain scission, in all the layers, which was more pronounced in polyethylene phase. The FTIR analysis results showed good agreement with those observed by the gel content measurements. It is believed that the crosslinking reaction had occurred through the C? N bonds in polyamide‐6, and vinyl group in polyethylene layers. The evaluation of radiation effect on the crystallinity and crosslinking of films by FTIR technique showed that by increasing the applied doses, the crystallinity in all the layers was decreased and the crosslinking was increased. The differential scanning calorimetry of irradiated samples revealed that due to the crosslinking reaction, the crystallinity was decreased by the applied dose. The tensile strength of the films was increased and the percent elongation at break was decreased, by increasing the applied doses. This study was also indicated that the radiation‐induced crosslinking effect on the tensile properties was dominantly observed up to 50 kGy. The surface free energy analysis of the films using the contact angle measurement and geometric mean equation indicated that the surface polarity was decreased by increasing the absorbed doses. It was found that due to the decline in the surface polarity and the simultaneously formation of crosslinked network in these films, both water vapor transmission rate and oxygen permeability were significantly decreased. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献