首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C? H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C? H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3)? C(sp3) bonds are elusive. Reported here is an asymmetric C? H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3)? C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

2.
A Pd(II)‐catalyzed enantioselective intramolecular amidation of both benzylic and unbiased methylene C(sp3)?H bonds for the straightforward synthesis of chiral β‐lactams from aliphatic carboxamides is reported. The combination of 2‐pyridinylisopropyl (PIP) auxiliary with 3,3’‐substituted BINOL ligands is crucial for the enhancement of both reactivity and enantiocontrol of differentiating unbiased methylene C(sp3)?H bonds. The desired chemoselective C—N reductive elimination was achieved by employing 2‐fluoro‐1‐iodo‐4‐nitrobenzene as oxidant.  相似文献   

3.
Herein, we describe an unprecedented cascade reaction to β‐stereogenic γ‐lactams involving Pd(II)‐catalyzed enantioselective aliphatic methylene C(sp3)?H alkenylation–aza‐Wacker cyclization through syn‐aminopalladation. Readily available 3,3′‐substituted BINOLs are used as chiral ligands, providing the corresponding γ‐lactams with broad scope and high enantioselectivities (up to 98 % ee).  相似文献   

4.
Cyclopropanes fused to pyrrolidines are important structural features found in a number of marketed drugs and development candidates. Typically, their synthesis involves the cyclopropanation of a dihydropyrrole precursor. Reported herein is a complementary approach which employs a palladium(0)‐catalyzed C? H functionalization of an achiral cyclopropane to close the pyrrolidine ring in an enantioselective manner. In contrast to aryl–aryl couplings, palladium(0)‐catalyzed C? H functionalizations involving the formation of C(sp3)? C(sp3) bonds of saturated heterocycles are very scarce. The presented strategy yields cyclopropane‐fused γ‐lactams from chloroacetamide substrates. A bulky Taddol phosphonite ligand in combination with adamantane‐1‐carboxylic acid as a cocatalyst provides the γ‐lactams in excellent yields and enantioselectivities.  相似文献   

5.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C? H bond functionalization process. The reaction favors predominantly the C? H bonds of β‐methyl groups over the unactivated methylene C? H bonds. Moreover, a preference for activating sp3 C? H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C? H bonds was also observed in the cyclometalation step. Additionally, sp3 C? H bonds of unactivated secondary sp3 C? H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

6.
The palladium(II)‐catalyzed β‐ and γ‐alkynylation of amide C(sp3)−H bonds is enabled by pyridine‐based ligands. This alkynylation reaction is compatible with substrates containing α‐tertiary or α‐quaternary carbon centers. The β‐methylene C(sp3)−H bonds of various carbocyclic rings were also successfully alkynylated.  相似文献   

7.
We have developed a highly efficient and practical approach for palladium‐catalyzed trifluoroacetate‐promoted N‐quinolylcarboxamide‐directed glycosylation of inert β‐C(sp3)?H bonds of N‐phthaloyl α‐amino acids with glycals under mild conditions. For the first time, C(sp3)?H activation for glycosylation was achieved to build C‐alkyl glycosides. This method facilitates the synthesis of various β‐substituted C‐alkyl glycoamino acids and offers a tool for glycopeptide synthesis.  相似文献   

8.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

9.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

10.
A quinoline‐based ligand effectively promotes the palladium‐catalyzed borylation of C(sp3)? H bonds. Primary β‐C(sp3)? H bonds in carboxylic acid derivatives as well as secondary C(sp3)? H bonds in a variety of carbocyclic rings, including cyclopropanes, cyclobutanes, cyclopentanes, cyclohexanes, and cycloheptanes, can thus be borylated. This directed borylation method complements existing iridium(I)‐ and rhodium(I)‐catalyzed C? H borylation reactions in terms of scope and operational conditions.  相似文献   

11.
Enantioselective functionalizations of unbiased methylene C(sp3)?H bonds of linear systems by metal insertion are intrinsically challenging and remain a largely unsolved problem. Herein, we report a palladium(II)‐catalyzed enantioselective arylation of unbiased methylene β‐C(sp3)?H bonds enabled by the combination of a strongly coordinating bidentate PIP auxiliary with a monodentate chiral phosphoric acid (CPA). The synergistic effect between the PIP auxiliary and the non‐C2‐symmetric CPA is crucial for effective stereocontrol. A broad range of aliphatic carboxylic acids and aryl bromides can be used, providing β‐arylated aliphatic carboxylic acid derivatives in high yields (up to 96 %) with good enantioselectivities (up to 95:5 e.r.). Notably, this reaction also represents the first palladium(II)‐catalyzed enantioselective C?H activation with less reactive and cost‐effective aryl bromides as the arylating reagents. Mechanistic studies suggest that a single CPA is involved in the stereodetermining C?H palladation step.  相似文献   

12.
The alkylation of unactivated β‐methylene C(sp3)? H bonds of α‐amino acid substrates with a broad range of alkyl iodides using Pd(OAc)2 as the catalyst is described. The addition of NaOCN and 4‐Cl‐C6H4SO2NH2 was found to be crucial for the success of this transformation. The reaction is compatible with a diverse array of functional groups and proceeds with high diastereoselectivity. Furthermore, various β,β‐hetero‐dialkyl‐ and β‐alkyl‐β‐aryl‐α‐amino acids were prepared by sequential C(sp3)? H functionalization of an alanine‐derived substrate, thus providing a versatile strategy for the stereoselective synthesis of unnatural β‐disubstituted α‐amino acids.  相似文献   

13.
Palladium(II)‐catalyzed C−H carbonylation reactions of methylene C−H bonds in secondary aliphatic amines lead to the formation of trans ‐disubstituted β‐lactams in excellent yields and selectivities. The generality of the C−H carbonylation process is aided by the action of xantphos‐based ligands and is important in securing good yields for the β‐lactam products.  相似文献   

14.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

15.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3) C(sp3) bonds are elusive. Reported here is an asymmetric C H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3) C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

16.
The first copper‐catalyzed intramolecular C(sp3)? H and C(sp2)? H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3)? H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2)? H amidation. Kinetic isotope effect (KIE) studies indicated that C? H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

17.
Reported herein is the distal γ‐C(sp3)?H olefination of ketone derivatives and free carboxylic acids. Fine tuning of a previously reported imino‐acid directing group and using the ligand combination of a mono‐N‐protected amino acid (MPAA) and an electron‐deficient 2‐pyridone were critical for the γ‐C(sp3)?H olefination of ketone substrates. In addition, MPAAs enabled the γ‐C(sp3)?H olefination of free carboxylic acids to form diverse six‐membered lactones. Besides alkyl carboxylic acids, benzylic C(sp3)?H bonds also could be functionalized to form 3,4‐dihydroisocoumarin structures in a single step from 2‐methyl benzoic acid derivatives. The utility of these protocols was demonstrated in large scale reactions and diversification of the γ‐C(sp3)?H olefinated products.  相似文献   

18.
The intramolecular coupling of two C(sp3)?H bonds to forge a C(sp3)?C(sp3) bond is enabled by 1,4‐Pd shift from a trisubstituted aryl bromide. Contrary to most C(sp3)?C(sp3) cross‐dehydrogenative couplings, this reaction operates under redox‐neutral conditions, with the C?Br bond acting as an internal oxidant. Furthermore, it allows the coupling between two moderately acidic primary or secondary C?H bonds, which are adjacent to an oxygen or nitrogen atom on one side, and benzylic or adjacent to a carbonyl group on the other side. A variety of valuable fused heterocycles were obtained from easily accessible ortho‐bromophenol and aniline precursors. The second C?H bond cleavage was successfully replaced with carbonyl insertion to generate other types of C(sp3)‐C(sp3) bonds.  相似文献   

19.
A rhodium(II)‐catalyzed reaction of newly prepared 4‐acyl‐1‐sulfonyl‐1,2,3‐triazoles with benzene, and its derivatives, is investigated. Acceptor/acceptor carbenoids generated from 4‐acyltriazoles undergo selective insertion at aromatic C(sp2)−H bonds in the presence of benzylic C(sp3)−H bonds to produce N ‐sulfonylenaminones.  相似文献   

20.
Cleavage of unstrained C−C bonds under mild, redox‐neutral conditions represents a challenging endeavor which is accomplished here in the context of a flexible, visible‐light‐mediated, γ‐functionalization of amines. In situ generated C‐centered radicals are harvested in the presence of Michael acceptors, thiols and alkyl halides to efficiently form new C(sp3)−C(sp3), C(sp3)−H and C(sp3)−Br bonds, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号