首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies are reported on a series of triphenylamine–(C?C)n–2,5‐diphenyl‐1,3,4‐oxadiazole dyad molecules (n=1–4, 1 , 2 , 3 and 4 , respectively) and the related triphenylamine‐C6H4–(C?C)3–oxadiazole dyad 5 . The oligoyne‐linked D–π–A (D=electron donor, A=electron acceptor) dyad systems have been synthesised by palladium‐catalysed cross‐coupling of terminal alkynyl and butadiynyl synthons with the corresponding bromoalkynyl moieties. Cyclic voltammetric studies reveal a reduction in the HOMO–LUMO gap in the series of compounds 1 – 4 as the oligoyne chain length increases, which is consistent with extended conjugation through the elongated bridges. Photophysical studies provide new insights into conjugative effects in oligoyne molecular wires. In non‐polar solvents the emission from these dyad systems has two different origins: a locally excited (LE) state, which is responsible for a π*→π fluorescence, and an intramolecular charge transfer (ICT) state, which produces charge‐transfer emission. In polar solvents the LE state emission vanishes and only ICT emission is observed. This emission displays strong solvatochromism and analysis according to the Lippert–Mataga–Oshika formalism shows significant ICT for all the luminescent compounds with high efficiency even for the longer more conjugated systems. The excited‐state properties of the dyads in non‐polar solvents vary with the extent of conjugation. For more conjugated systems a fast non‐radiative route dominates the excited‐state decay and follows the Engelman–Jortner energy gap law. The data suggest that the non‐radiative decay is driven by the weak coupling limit.  相似文献   

2.
Restriction of intramolecular motion (RIM), as the working mechanism of aggregation‐induced emission (AIE), cannot fully explain some heteroatom‐containing systems. Now, two excited states are taken into account and a mechanism, restriction of access to dark state (RADS), is specified to elaborate RIM and complete the picture of AIE mechanism. A nitrogen‐containing molecule named APA is chosen as a model compound; its weak fluorescence in solution is ascribed to the easy access from the bright (π,π*) state to the close‐lying dark (n,π*) state. By either metal complexation or aggregation, the dark state is less accessible due to restriction of the molecular motion leading to the dark state and elevation of the dark state energy, thus the bright state emission is restored. RADS is powerful in elucidating the AIE effect of molecules with excited states favoring non‐radiative decay, including overlap‐forbidden states such as (n,π*) and CT states, spin‐forbidden triplet states, and so on.  相似文献   

3.
Time‐resolved fluorescence and transient absorption experiments uncover a distinct change in the relaxation dynamics of the homo‐dimer formed by two 2,5‐bis[1‐(4‐N‐methylpyridinium)ethen‐2‐yl)]‐N‐methylpyrrole ditriflate ( M ) units linked by a short alkyl chain when compared to that of the monomer M . Fluorescence decay traces reveal characteristic decay times of 1.1 ns and 210 ps for M and the dimer, respectively. Transient absorption spectra in the spectral range of 425–1050 nm display similar spectral features for both systems, but strongly differ in the characteristic relaxation times gathered from a global fit of the experimental data. To rationalize the data we propose that after excitation of the dimer the energy localizes on one M branch and then decays to a dark state, peculiar only of the dimer. This dark state relaxes to the ground state within 210 ps through non‐radiative relaxation. The nature of the dark state is discussed in relation to different possible photophysical processes such as excimer formation and charge transfer between the two M units. Anisotropy decay traces of the probe‐beam differential transmittance of M and the dimer fall on complete different time scales as well. The anisotropy decay for M is satisfactorily ascribed to rotational diffusion in DMSO, whereas for the dimer it occurs on a faster time scale and is likely caused by energy‐transfer processes between the two monomer M units.  相似文献   

4.
The reduction of 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (TPT) with alkali metals resulted in four radical anion salts ( 1 , 2 , 4 and 5 ) and one diradical dianion salt ( 3 ). Single‐crystal X‐ray diffraction and electron paramagnetic resonance (EPR) spectroscopy reveal that 1 contains the monoradical anion TPT.? stacked in one‐dimensional (1D) with K+(18c6) and 2 can be viewed as a 1D magnetic chain of TPT.?, while 4 and 5 form radical metal‐organic frameworks (RMOFs). 1D pore passages, with a diameter of 6.0 Å, containing solvent molecules were observed in 5 . Variable‐temperature EPR measurements show that 3 has an open‐shell singlet ground state that can be excited to a triplet state, consistent with theoretical calculation. The work suggests that the direct reduction approach could lead to the formation of RMOFs.  相似文献   

5.
The photophysical signature of the tautomeric species of the asymmetric (N,N‐dimethylanilino)‐1,3‐diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time‐dependent DFT (TD‐DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density‐based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited‐state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity.  相似文献   

6.
Planar molecules 3,7‐diaryl‐1,5,2,4,6,8‐dithiotetrazocines would be potential acceptor materials of organic solar cell because of their containing SN units. One‐pot synthetic procedures of 3,7‐diaryl‐1,5,2,4,6,8‐dithiotetrazocine compounds are developed to improve their yields up to 2.1–5.9 times as much as those in literatures. The geometries of title compounds were optimized by the density functional theory calculations. Their optoelectronic properties were studied by ultraviolet and cyclic voltammetry spectra and fluorescence quenching experiments. The highest occupied and lowest unoccupied molecular orbital energy level values show that these compounds are suitable to be employed as acceptor materials for developing bulk heterojunction organic solar cells with high open circuit voltages. Emission fluorescence of poly(3‐hexylthiophene) at excited state in dichloromethane was quenched by addition of title compound. Therefore, these compounds used as acceptor materials could exhibit good mobility.  相似文献   

7.
Ultralong organic phosphorescence (UOP) has attracted increasing attention due to its potential applications in optoelectronics, bioelectronics, and security protection. However, achieving UOP with high quantum efficiency (QE) over 20 % is still full of challenges due to intersystem crossing (ISC) and fast non‐radiative transitions in organic molecules. Here, we present a novel strategy to enhance the QE of UOP materials by modulating intramolecular halogen bonding via structural isomerism. The QE of CzS2Br reaches up to 52.10 %, which is the highest afterglow efficiency reported so far. The crucial reason for the extraordinary QE is intramolecular halogen bonding, which can not only effectively enhance ISC by promoting spin–orbit coupling, but also greatly confine motions of excited molecules to restrict non‐radiative pathways. This work provides a reasonable strategy to develop highly efficient UOP materials for practical applications.  相似文献   

8.
The photophysical properties of a chlorin, isobacteriochlorin and bacteriochlorin built on a core tetrapentafluorophenylporphyrin (TPPF20) and the nonhydrolyzable para thioglycosylated conjugates of these chromophores are presented. The photophysical characterization of these compounds was done in three different solvents to correlate with different environments in cells and tissues. Compared with TPPF20 other dyes have greater absorption in the red region of the visible spectrum and greater fluorescence quantum yields. The excited state lifetimes are from 3 to 11 ns. The radiative and nonradiative rate constants for deactivation of the excited state were estimated from the fluorescence quantum yield and excited state lifetime. The data indicate that the bacteriochlorin has strong absorption bands near 730 nm and efficiently enters the triplet manifold. The isobacteriochlorin has a 40–70% fluorescence quantum yield depending on solvent, so it may be a good fluorescent tag. The isobacteriochlorins also display enhanced two‐photon absorption, thereby allowing the use of 860 nm light to excite the compound. While the two‐photon cross section of 25 GM units is not large, excitation of low chromophore concentrations can induce apoptosis. The glycosylated compounds accumulate in cancer cells and a head and neck squamous carcinoma xenograft tumor model in mice. These compounds are robust to photobleaching.  相似文献   

9.
In this paper, we theoretically explore the motivation and behaviors of the excited‐state intramolecular proton transfer (ESIPT) reaction for a novel white organic light‐emitting diode (WOLED) material 4‐tert‐butyl‐2‐(5‐(5‐tert‐butyl‐2‐methoxyphenyl)thiazolo[5,4‐d]thiazol‐2‐yl)‐phenol (t‐MTTH). The “atoms in molecules” (AIM) method is adopted to verify the formation and existence of the hydrogen bond O? H···N. By analyzing the excited‐state hydrogen bonding behaviors via changes in the chemical bonding and infrared (IR) vibrational spectra, we confirm that the intramolecular hydrogen bond O? H···N should be getting strengthened in the first excited state in four kinds of solvents, thus revealing the tendency of ESIPT reaction. Further, the role of charge‐transfer interaction is addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. Also, the electron distribution confirms the ESIPT tendency once again. The scanned and optimized potential energy curves according to variational O? H coordinate in the solvents demonstrate that the proton transfer reaction should occur in the S1 state, and the potential energy barriers along with ESIPT direction support this reaction. Based on the excited‐state behaviors reported in this work, the experimental spectral phenomenon has been reasonably explained.  相似文献   

10.
A series of metal–organic chromophores containing RuII or IrIII were studied for the luminometric detection of nitroaromatic compounds, including trinitrotoluene (TNT). These complexes display long‐lived, intense photoluminescence in the visible region and are demonstrated to serve as luminescent sensors for nitroaromatics. The solution‐based behavior of these photoluminescent molecules has been studied in detail in order to identify the mechanism responsible for metal‐to‐ligand charge‐transfer (MLCT) excited state quenching upon addition of TNT and 2,4‐dinitrotoluene (2,4‐DNT). A combination of static and dynamic spectroscopic measurements unequivocally confirmed that the quenching was due to a photoinduced electron transfer (PET) process. Ultrafast transient absorption experiments confirmed the formation of the TNT radical anion product following excited state electron transfer from these metal complexes. Reported for the first time, photoluminescence quenching realized through ink‐jet printing and solid‐state titrations was used for the solid‐state detection of TNT; achieving a limit‐of‐quantitation (LOQ) as low as 5.6 ng cm?2. The combined effect of a long‐lived excited state and an energetically favorable driving force for the PET process makes the RuII and IrIII MLCT complexes discussed here particularly appealing for the detection of nitroaromatic volatiles and related high‐energy compounds.  相似文献   

11.
Various conformation‐dependent properties of chain molecules have been successfully treated within the rotational isomeric state approximation. The conformation entropy is one of such properties which can be readily defined by the partition function, the sum of all possible configurations of the chain. Flexible polymers often exhibit crystallization and in some cases liquid‐crystallization as well. In these first‐order transitions, changes in the spatial arrangement of polymer chains are considered to be a major factor involved. In order to explicitly determine the conformational contribution to the melting entropy, the latent entropy observed under the isobaric condition must be corrected for the volume change. The entropy separation involves a hypothetical assumption that the volume of the isotropic fluid may be compressed to that of the solid state without affecting the configurational part of the entropy of molecules. Finally thermodynamic significance of the conformation entropy in these transitions is emphasized on the basis of the critical studies of the entropy‐volume relation of chain molecules in the liquid state.  相似文献   

12.
T‐shaped π‐conjugated molecules with an N‐methyl‐benzimidazole junction have been synthesized and their acid‐responsive photophysical properties owing to the change in the π‐conjugation system are discussed. T‐shaped π‐conjugated molecules consist of two orthogonal π‐conjugated systems including a phenyl thiophene extended from the 2‐position and alkyl phenylenes connected through various π‐spacers from the 4,7‐positions of the N‐methyl‐benzimidazole junction. The π‐spacers, such as thiophene, ethyne, and ethane, have an effect on the acid response of photophysical properties in terms of changes in conformation, excited‐state energy and charge‐transfer (CT) characteristics. In particular, the π‐conjugated molecule with ethynyl spacers exhibited a marked redshift in the fluorescence spectrum with a large Stokes shift upon the addition of acid, whereas the other molecules showed substantial quenching. The redshift in emission was studied in detail by temperature‐dependent fluorescence measurements, which indicated the transition to a CT state over the finite activation energy at the excited state. The change in the frontier molecular orbitals upon acid addition was further discussed by means of DFT calculations.  相似文献   

13.
The fluorescence properties of two new families of heterocycles possessing either a seven‐ or five‐membered ring attached at the core molecule are entirely different in solution and in the solid state. Crystallization has the effect of inhibiting non‐radiative excited‐state deactivation pathways, operative in solution for the seven‐membered ring compounds, thus leading to significant fluorescence efficiency in the solid state, with quantum yields ranging from 0.10 to 0.36. Conversely, the five‐membered ring derivatives, which display notable emission properties in solution, are almost non‐emissive in the crystalline state, characterized by a long‐range π‐stacked arrangement. When embedded in polymeric films, both series show fluorescence features similar to the solution case, with remarkable fluorescence quantum yields ranging from 0.09 to 0.41. According to quantum chemical calculations, 3H‐chromeno[3,4‐c]pyridine‐4,5‐diones show the specific mechanism of fluorescence quenching. The derivatives bearing the seven‐membered ring undergo, in solution, a significant structural deformation in the excited state, resulting in a large decrease of the energy gap between S1 and S0 and hence to a substantial contribution of the internal conversion in the relaxation process. The fluorescence quenching of the five‐membered ring derivatives is in turn related to the intermolecular interaction between adjacent molecules prevailing to a greater extent in the crystal lattice.  相似文献   

14.
Four D ‐π‐A dyes (D=donor, A=accpetor) based on a 3,4‐thienothiophene π‐bridge were synthesized for use in dye‐sensitized solar cells (DSCs). The proaromatic building block 3,4‐thienothiophene is incorporated to stabilize dye excited‐state oxidation potentials. This lowering of the excited‐state energy levels allows for deeper absorption into the NIR region with relatively low molecular weight dyes. The influence of proaromatic functionality is probed through a computational analysis of optimized bond lengths and nucleus independent chemical shifts (NICS) for both the ground‐ and excited‐ states. To avoid a necessary lowering of the TiO2 semiconductor conduction band (CB) to promote efficient dye–TiO2 electron injection, strong donor functionalities based on triaryl‐ and diarylamines are employed in the dye designs to raise both the ground‐ and excited‐state oxidation potentials of the dyes. Solubility, aggregation, and TiO2 surface protection are addressed by examining an ethylhexyl alkyl chain in comparison to a simple ethyl chain on the 3,4‐thienothiophene bridge. Power conversion efficiencies of up to 7.8 % are observed.  相似文献   

15.
[2.2]Paracyclophane‐based through‐space conjugated oligomers and polymers were prepared, in which poly(p‐arylene–ethynylene) (PAE) units were partially π‐stacked and layered, and their properties in the ground state and excited state were investigated in detail. Electronic interactions among PAE units were effective through at least ten units in the ground state. Photoexcited energy transfer occurred from the stacked PAE units to the end‐capping PAE moieties. The electrical conductivity of the polymers was estimated using the flash‐photolysis time‐resolved microwave conductivity (FP‐TRMC) method and investigated together with time‐dependent density functional theory (TD‐DFT) calculations, showing that intramolecular charge carrier mobility through the stacked PAE units was a few tens of percentage larger than through the twisted PAE units.  相似文献   

16.
Photooxidation of alkanes by dioxygen occurred under visible light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) which acts as a super photooxidant. Solvent‐free hydroxylation of cyclohexane and alkanes is initiated by electron transfer from alkanes to the singlet and triplet excited states of DDQ to afford the corresponding radical cations and DDQ??, as revealed by femtosecond laser‐induced transient absorption measurements. Alkane radical cations readily deprotonate to produce alkyl radicals, which react with dioxygen to afford alkylperoxyl radicals. Alkylperoxyl radicals abstract hydrogen atoms from alkanes to yield alkyl hydroperoxides, accompanied by regeneration of alkyl radicals to constitute the radical chain reactions, so called autoxidation. The radical chain is terminated in the bimolecular reactions of alkylperoxyl radicals to yield the corresponding alcohols and ketones. DDQ??, produced by the photoinduced electron transfer from alkanes to the excited state of DDQ, disproportionates with protons to yield DDQH2.  相似文献   

17.
Quinoidal π‐conjugated polycyclic hydrocarbons have attracted intensive research interest due to their unique optical/electronic properties and possible magnetic activity, which arises from a thermally excited triplet state. However, there is still lack of fundamental understanding on the factors that determine the electronic ground states. Herein, by using quinoidal oligo(9,10‐anthryl)s, it is demonstrated that both aromatic stabilisation and steric strain release play balanced roles in determining the ground states. Oligomers with up to four anthryl units were synthesised and their ground states were investigated by electronic absorption and electron spin resonance (ESR) spectroscopy, assisted by density functional theory (DFT) calculations. The quinoidal 9,10‐anthryl dimer 1 has a closed‐shell ground state, whereas the tri‐ ( 2 ) and tetramers ( 3 ) both have an open‐shell diradical ground state with a small singlet–triplet gap. Such a difference results from competition between two driving forces: the large steric repulsion between the anthryl/phenyl units in the closed‐shell quinoidal form that drives the molecule to a flexible open‐shell diradical structure, and aromatic stabilisation due to the gain of more aromatic sextet rings in the closed‐shell form, which drives the molecule towards a contorted quinoidal structure. The ground states of these oligomers thus depend on the overall balance between these two driving forces and show chain‐length dependence.  相似文献   

18.
A series of coronenetetraimide (CorTIm)‐centered cruciform pentamers containing multiporphyrin units, in which four porphyrin units are covalently linked to a CorTIm core through benzyl linkages, were designed and synthesized to investigate their structural, spectroscopic, and electrochemical properties as well as photoinduced electron‐ and energy‐transfer dynamics. These systems afforded the first synthetic case of coroneneimide derivatives covalently linked with dye molecules. The steady‐state absorption and electrochemical results indicate that a CorTIm and four porphyrin units were successfully characterized by the corresponding reference monomers. In contrast, the steady‐state fluorescence measurements demonstrated that strong fluorescence quenching relative to the corresponding monomer units was observed in these pentamers. Nanosecond laser flash photolysis measurements revealed the occurrence of intermolecular electron transfer from triplet excited state of zinc porphyrins to CorTIm. Femtosecond laser‐induced transient absorption measurements for excitation of the CorTIm unit clearly demonstrate the sequential photoinduced energy and electron transfer between CorTIm and porphyrins, that is, occurrence of the initial energy transfer from CorTIm (energy donor) to porphyrins (energy acceptor) and subsequent electron transfer from porphyrins (electron donor) to CorTIm (electron acceptor) in these pentamers, whereas only the electron‐transfer process from porphyrins to CorTIm was observed when we mainly excite porphyrin units. Finally, construction of high‐order supramolecular patterning of these pentamers was performed by utilizing self‐assembly and physical dewetting during the evaporation of solvent.  相似文献   

19.
Triplet harvesting is a main challenge in organic light‐emitting devices (OLEDs), because the radiative decay of the triplet is spin‐forbidden. Here, we propose a new kind of OLED, in which an organic open‐shell molecule, (4‐N‐carbazolyl‐2,6‐dichlorophenyl)bis(2,4,6‐trichlorophenyl)methyl (TTM‐1Cz) radical, is used as an emitter, to circumvent the transition problem of triplet. For TTM‐1Cz, there is only one unpaired electron in the highest singly occupied molecular orbital (SOMO). When this electron is excited to the lowest singly unoccupied molecular orbital (SUMO), the SOMO is empty. Thus, transition back of the excited electron to the SOMO is totally spin‐allowed. Spectral analysis showed that electroluminescence of the OLED originated from the electron transition between SUMO and SOMO. The magneto‐electroluminescence measurements revealed that the spin configuration of the excited state of TTM‐1Cz is a doublet. Our results pave a new way to obtain 100 % internal quantum efficiency of OLEDs.  相似文献   

20.
Sterically hindered 1,4‐dihydropyrrolo[3,2‐b]pyrroles possessing ortho‐(arylethynyl)phenyl substituents at positions‐2 and ‐5 were efficiently synthesized through a sila‐Sonogashira reaction. These unique Z‐shaped dyes showed relatively strong fluorescence in solution. Detailed optimization revealed that, in the presence of InCl3, these alkynes readily undergo an intramolecular double cyclization to give hexacyclic products bearing an indolo[3,2‐b]indole skeleton in remarkable yields. Steady‐state UV–visible spectroscopy revealed that upon photoexcitation, the prepared Z‐shaped alkynes undergo mostly radiative relaxation leading to high fluorescence quantum yields. In the case of 7,14‐dihydrobenzo[g]benzo[6,7]indolo[3,2‐b]indoles, we believe that the substantial planarization of geometry in the excited state, is the underlying reason for the observed large Stokes shifts. The presence of additional electron‐withdrawing groups makes it possible to further alter the photophysical properties. The two‐photon absorption cross‐section values of both families of dyes were found to be modest and the nature of the excited state responsible for two‐photon absorption appeared to be strongly affected by the presence of peripheral groups. Serendipitous synthesis of unusual double‐Z‐shaped alkyne by Sonogashira and Glaser coupling is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号