首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A supported metal catalyst was designed, characterized, and tested for aqueous phase heterogeneous hydrogenation of vinyl acetate with parahydrogen to produce 13C‐hyperpolarized ethyl acetate for potential biomedical applications. The Rh/TiO2 catalyst with a metal loading of 23.2 wt % produced strongly hyperpolarized 13C‐enriched ethyl acetate‐1‐13C detected at 9.4 T. An approximately 14‐fold 13C signal enhancement was detected using circa 50 % parahydrogen gas without taking into account relaxation losses before and after polarization transfer by magnetic field cycling from nascent parahydrogen‐derived protons to 13C nuclei. This first observation of 13C PHIP‐hyperpolarized products over a supported metal catalyst in an aqueous medium opens up new possibilities for production of catalyst‐free aqueous solutions of nontoxic hyperpolarized contrast agents for a wide range of biomolecules amenable to the parahydrogen induced polarization by side arm hydrogenation (PHIP‐SAH) approach.  相似文献   

2.
We report on a simple approach for efficient NMR proton hyperpolarization of propane using the parahydrogen‐induced polarization (PHIP) technique, which yielded ≈6.2 % proton polarization using ≈80 % parahydrogen, a record level achieved with any hyperpolarization technique for propane. Unlike in previously developed approaches designed for continuous‐flow operation, where reactants (propene and parahydrogen) are simultaneously loaded for homogeneous or heterogeneous pairwise addition of parahydrogen, here a batch‐mode method is applied: propene is first loaded into the catalyst‐containing solution, which is followed by homogeneous hydrogenation via parahydrogen bubbling delivered at ≈7.1 atm. The achieved nuclear spin polarization of this contrast agent potentially useful for pulmonary imaging is approximately two orders of magnitude greater than that achieved in the continuous‐flow homogeneous catalytic hydrogenation, and a factor of 3–10 more efficient compared to the typical results of heterogeneous continuous‐flow hydrogenations.  相似文献   

3.
In heterogeneous catalysis, supports play a crucial role in modulating the geometric and electronic structure of the active metal phase for optimizing the catalytic performance. A γ‐Al2O3 nanosheet that contains 27 % pentacoordinate Al3+ sites can nicely disperse and stabilize raft‐like Pt‐Sn clusters as a result of strong interactions between metal and support. Consequently, there are strong electronic interactions between the Pt and Sn atoms, resulting in an increase in the electron density of the Pt sites. When used in the propane dehydrogenation reaction, this catalyst displayed an excellent specific activity for propylene formation with >99 % selectivity, and superior anti‐coking and anti‐sintering properties. Its exceptional ability to maintain the high activity and stability at ultrahigh space velocities further showed that the sheet construction of the catalyst facilitated the kinetic transfer process.  相似文献   

4.
Ceria (CeO2) supports are unique in their ability to trap ionic platinum (Pt), providing exceptional stability for isolated single atoms of Pt. The reactivity and stability of single‐atom Pt species was explored for the industrially important light alkane dehydrogenation reaction. The single‐atom Pt/CeO2 catalysts are stable during propane dehydrogenation, but are not selective for propylene. DFT calculations show strong adsorption of the olefin produced, leading to further unwanted reactions. In contrast, when tin (Sn) is added to CeO2, the single‐atom Pt catalyst undergoes an activation phase where it transforms into Pt–Sn clusters under reaction conditions. Formation of small Pt–Sn clusters allows the catalyst to achieve high selectivity towards propylene because of facile desorption of the product. The CeO2‐supported Pt–Sn clusters are very stable, even during extended reaction at 680 °C. Coke formation is almost completely suppressed by adding water vapor to the feed. Furthermore, upon oxidation the Pt–Sn clusters readily revert to the atomically dispersed species on CeO2, making Pt–Sn/CeO2 a fully regenerable catalyst.  相似文献   

5.
Bimetallic nanoparticles (NPs) often show new catalytic properties that are different from those of the parent metals. Carefully exploring the structures of bimetallic NPs is a prerequisite for understanding the structure‐associated properties. Herein, binary Pt?Sn NPs with tunable composition are prepared in a controllable manner. X‐ray characterizations reveal that their structures evolve from SnO2?x‐patched PtSn alloys to SnO2?x‐patched Pt clusters when more tin is incorporated. An obvious composition‐dependent catalytic performance is observed for the hydrogenation of α,β‐unsaturated aldehydes: the selectivity to unsaturated alcohol increases substantially at high tin content, whereas the reaction rate follows a volcano shape. Furthermore, Pt sites are responsible for hydrogen dissociation, whereas oxygen vacancy (Ovac) sites, provided by SnO2?x, drastically enhance the adsorption of carbonyl group.  相似文献   

6.
NHC adducts of the stannylene Trip2Sn (Trip=2,4,6‐triisopropylphenyl) were reacted with zero‐valent Ni, Pd, and Pt precursor complexes to cleanly yield the respective metal complexes featuring a three‐membered ring moiety Sn‐Sn‐M along with carbene transfer onto the metal and complete substitution of the starting ligands. Thus the easily accessible NHC adducts to stannylenes are shown to be valuable precursors for transition‐metal complexes with an unexpected Sn? Sn bond. The complexes have been studied by X‐ray diffraction and NMR spectroscopy as well as DFT calculations. The compounds featuring the structural motif of a distannametallacycle comprised of a [(NHC)2M0] fragment and Sn2Trip4 represent rare higher congeners of the well‐known olefin complexes. DFT calculations indicate the presence of a π‐type Sn–Sn interaction in these first examples for acyclic distannenes symmetrically coordinating to a zero‐valent transition metal.  相似文献   

7.
Hyperpolarization techniques are key to extending the capabilities of MRI for the investigation of structural, functional and metabolic processes in vivo. Recent heterogeneous catalyst development has produced high polarization in water using parahydrogen with biologically relevant contrast agents. A heterogeneous ligand‐stabilized Rh catalyst is introduced that is capable of achieving 15N polarization of 12.2±2.7 % by hydrogenation of neurine into a choline derivative. This is the highest 15N polarization of any parahydrogen method in water to date. Notably, this was performed using a deuterated quaternary amine with an exceptionally long spin‐lattice relaxation time (T1) of 21.0±0.4 min. These results open the door to the possibility of 15N in vivo imaging using nontoxic similar model systems because of the biocompatibility of the production media and the stability of the heterogeneous catalyst using parahydrogen‐induced polarization (PHIP) as the hyperpolarization method.  相似文献   

8.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(CC) interactions, Pt Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

9.
Developing new methods to synthesize intermetallics is one of the most critical issues for the discovery and application of multifunctional metal materials; however, the synthesis of Sn‐containing intermetallics is challenging. In this work, we demonstrated for the first time that a self‐disproportionation‐induced in situ process produces cavernous Sn?Cu intermetallics (Cu3Sn and Cu6Sn5). The successful synthesis is realized by introducing inorganic metal salts (SnCl2 ? 2 H2O) to NaOH aqueous solution to form an intermediate product of reductant (Na2SnO2) and by employing steam pressures that enhance the reduction ability. Distinct from the traditional in situ reduction, the current reduction process avoided the uncontrolled phase composition and excessive use of organic regents. An insight into the mechanism was revealed for the Sn?Cu case. Moreover, this method could be extended to other Sn‐containing materials (Sn?Co, Sn?Ni). All these intermetallics were attempted in the catalytic effect on thermal decompositions of ammonium perchlorate. It is demonstrated that Cu3Sn showed an outstanding catalytic performance. The superior property might be primarily originated from the intrinsic chemical compositions and cavernous morphology as well. We supposed that this smart solution reduction methodology reported here would provide a new recognition for the reduction reaction, and its modified strategy may be applied to the synthesis of other metals, intermetallics as well as some unknown materials.  相似文献   

10.
Catalysts based on Pt and Rh modified with Sn(C4H9)4 were studied in the hydrogenation of 4-methoxyacetophenone. The selectivity to 1-(4-methoxyphenyl)ethanol was close to 100% at Sn/(Pt,Rh) = 1.0, however the catalytic activity decreased drastically. With respect to the balance between activity and selectivity the catalyst PtSnOM (Sn/Pt=0.4) showed the best performance.  相似文献   

11.
Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D 1H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625×625×625 μm3) and large imaging matrix (128×128×32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time.  相似文献   

12.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(C?C) interactions, Pt? Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt? alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

13.
Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen‐induced polarization (PHIP) is applied to enhance 19F MR signals of (perfluoro‐n‐hexyl)ethene and (perfluoro‐n‐hexyl)ethane. Unexpectedly, the end‐standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons. To clarify this non‐intuitive distribution of polarization, signal enhancements in deuterated chloroform and acetone were compared and 19F–19F NOESY spectra, as well as 19F T1 values were measured by NMR spectroscopy. By using the well separated and enhanced signal of the CF3 group, first 19F MR images of hyperpolarized linear semifluorinated alkenes were recorded.  相似文献   

14.
A series of new Cu(II), Pt(II), VO(II), Fe(II), and Co(II) complexes ( 1‐‐5 ) with 3‐methyl‐6,7‐diphenyllumazine are described. Similarly, complexes from 2‐thiouracil with Cu(II) ( 6,7 ) and Pt(II) ( 8 ) have been prepared and characterized by spectroscopic methods. All the complexes were assayed for their anti‐HIV‐1 and HIV‐2 activity by examination of their inhibition of HIV‐induced cytopathogenicity in MT‐4 cells. Compound 3 was found to be the most active inhibitor against HIV‐2 in cell culture (EC50 = >18.9 μ g/mL, selectivity index (SI) = 3), which provided a good lead for further optimization. Compounds 6 and 7 exhibited some activity (EC50 = >7.12 μ g/mL and >2.23 μ g/mL) against HIV‐1 and HIV‐2, but no selectivity was observed (SI <1). © 2010 Wiley Periodicals, Inc. Heteroatom Chem 22:44–50, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20654  相似文献   

15.
Cytomegalovirus is typically associated with immunocompromised hosts, pregnant women and transplant patients, who require a timely diagnosis. In this work, a sensitive and highly specific electrochemical amplification immunosensor was established for detecting Cytomegalovirus pp65 antigen based on Pt‐PdNPs@SWCNHs with horseradish peroxidase (HRP) as a signal enhancer and thionine as a signal probe. First, Pt nanoparticle (PtNP) and Pd nanoparticle (PdNP) functionalized single‐walled carbon nanohorn (SWCNH) nanocomposites, i.e. Pt‐PdNPs@SWCNHs, was used as a carrier for immobilization of antibody through the Pt‐N bond and the Pd‐N bond. Next, HRP was used to block the rest of the binding‐sites. Signal amplification was obtained by the cooperative catalytic activities of Pt‐PdNPs and HRP to H2O2. SWCNHs loaded with a large amount of Pt‐PdNPs further amplified the signal due to the excellent surface area. The fabricated immunosensor was used to detect different concentrations of Cytomegalovirus pp65 antigen under optimized conditions. The tests showed a linear range from 0.1 to 80 ng mL?1 with a low detection limit of 30 pg mL?1, and exhibited excellent selectivity, stability and reproducibility. Therefore, this project presented a potential approach for the early diagnosis of Cytomegalovirus infection in clinical trials.  相似文献   

16.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

17.
Low‐cost quantum‐dot sensitized solar cells (QDSSCs) were fabricated by using the earth‐abundant element SnS quantum dot, novel TiC counter electrodes, and the organic disulfide/thiolate (T2/T?) redox couple, and reached an efficiency of 1.03 %. QDSSCs based on I?/I3?, T2/T?, and S2?/Sx2? redox couples were assembled to study the role of the redox couples in the regeneration of sensitizers. Charge‐extraction results reveal the reasons for the difference in JSC in three QDSSCs based on I?/I3?, T2/T?, and S2?/Sx2? redox couples. The catalytic selectivity of TiC and Pt towards T2/T? and I?/I3? redox couples was investigated using Tafel polarization and electrochemical impedance analysis. These results indicated that Pt and TiC show a similar catalytic selectivity for I?/I3?. However, TiC possesses better catalytic activity for T2/T? than for I?/I3?. These results indicate the great potential of transition metal carbide materials and organic redox couples used in QDSSCs.  相似文献   

18.
Silica‐supported chitosan‐platinum‐iron complex (SiO2‐CS‐Pt‐Fe) is prepared by a simple method from silica, chitosan, H2PtCl6 · 6H2O and FeCl3. It has been found to be an effective chiral catalyst for the asymmetric hydrogenation of 2‐hexanone to give (S)‐(+)‐2‐hexanol and methyl acetoacetate to give methyl‐(S)‐(+)‐3‐hydroxybutyrate in 85.4 and 75.0% optical yields, respectively, if a proper content of Pt and Fe in SiO2‐CS‐Pt‐Fe complex and appropriate reaction conditions are selected at room temperature and under 1 atm H2. The catalyst could be reused several times without any remarkable change in optical catalytic activity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Three‐dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self‐assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt‐TiO2 nano‐network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom‐level thickness precision. The 3D peptide‐TiO2 nano‐network was further decorated with highly monodisperse Pt nanoparticles by using ozone‐assisted ALD. The 3D TiO2 nano‐network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia–borane, generating three equivalents of H2.  相似文献   

20.
Two Pt single‐atom catalysts (SACs) of Pt‐GDY1 and Pt‐GDY2 were prepared on graphdiyne (GDY)supports. The isolated Pt atoms are dispersed on GDY through the coordination interactions between Pt atoms and alkynyl C atoms in GDY, with the formation of five‐coordinated C1‐Pt‐Cl4 species in Pt‐GDY1 and four‐coordinated C2‐Pt‐Cl2 species in Pt‐GDY2. Pt‐GDY2 shows exceptionally high catalytic activity for the hydrogen evolution reaction (HER), with a mass activity up to 3.3 and 26.9 times more active than Pt‐GDY1 and the state‐of‐the‐art commercial Pt/C catalysts, respectively. Pt‐GDY2 possesses higher total unoccupied density of states of Pt 5d orbital and close to zero value of Gibbs free energy of the hydrogen adsorption (|Δ |) at the Pt active sites, which are responsible for its excellent catalytic performance. This work can help better understand the structure–catalytic activity relationship in Pt SACs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号