首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traveling wave ion mobility mass spectrometry (TWIM‐MS) is shown to be able to separate and characterize several isomeric forms of diterpene glycosides stevioside (Stv) and rebaudioside A (RebA) that are cationized by Na+ and K+ at different sites. Determination and characterization of these coexisting isomeric species, herein termed catiomers, arising from cationization at different and highly competitive coordinating sites, is particularly challenging for glycosides. To achieve this goal, the advantage of using CO2 as a more massive and polarizable drift gas, over N2, was demonstrated. Post‐TWIM‐MS/MS experiments were used to confirm the separation. Optimization of the possible geometries and cross‐sectional calculations for mobility peak assignments were also performed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Travelling wave ion mobility mass spectrometry (TWIM‐MS) with post‐TWIM and pre‐TWIM collision‐induced dissociation (CID) experiments were used to form, separate and characterize protomers sampled directly from solutions or generated in the gas phase via CID. When in solution equilibria, these species were transferred to the gas phase via electrospray ionization, and then separated by TWIM‐MS. CID performed after TWIM separation (post‐TWIM) allowed the characterization of both protomers via structurally diagnostic fragments. Protonated aniline (1) sampled from solution was found to be constituted of a ca. 5:1 mixture of two gaseous protomers, that is, the N‐protonated (1a) and ring protonated (1b) molecules, respectively. When dissociated, 1a nearly exclusively loses NH3, whereas 1b displays a much diverse set of fragments. When formed via CID, varying populations of 1a and 1b were detected. Two co‐existing protomers of two isomeric porphyrins were also separated and characterized via post‐TWIM CID. A deprotonated porphyrin sampled from a basic methanolic solution was found to be constituted predominantly of the protomer arising from deprotonation at the carboxyl group, which dissociates promptly by CO2 loss, but a CID‐resistant protomer arising from deprotonation at a porphyrinic ring NH was also detected and characterized. The doubly deprotonated porphyrin was found to be constituted predominantly of a single protomer arising from deprotonation of two carboxyl groups. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Noncovalent interactions are ubiquitous in ternary systems involving metal ions, DNA/RNA, and proteins and represent a structural motif for design of selective inhibitors of biological function. This contribution shows that small molecules containing platinated purine nucleobases mimic the natural DNA(RNA)-tryptophan recognition interaction of zinc finger peptides, specifically the C-terminal finger of HIV NCp7 protein. Interaction with platinum results in Zn ejection from the peptide accompanied by loss of tertiary structure. Targeting the NCp7-DNA interaction for drug design represents a conceptual advance over electrophiles designed for chemical attack on the zinc finger alone. These results demonstrate examples of a new platinum structural class targeting specific biological processes, distinct from the bifunctional DNA-DNA binding of cytotoxic agents like cisplatin. The results confirm the validity of a chemical biological approach for metallodrug design for selective ternary DNA(RNA)-protein interactions.  相似文献   

5.
Traveling-wave ion mobility (TWIM) coupled to mass spectrometry (MS) has emerged as a powerful tool for structural and conformational analysis of proteins and peptides, allowing the analysis of isomeric peptides (or proteins) with the same sequence but modified at different residues. This work demonstrates the use of the novel TWIM-MS technique to separate isomeric peptide ions derived from chemical cross-linking experiments, which enables the acquisition of distinct product ion spectra for each isomer, clearly indicating modification on different sites. Experiments were performed with four synthetic peptides, for which variable degrees of mobility separation were achieved. In cases of partially overlapping mobility arrival time distributions (ATDs), extracting the ATDs of fragment ions belonging to each individual isomer allowed their separation into two distinct ATDs. Accumulation over regions from the specific ATDs generates the product ion spectrum of each isomer, or a spectrum highly enriched in their fragments. The population of both modified peptide isomers was correlated with the intrinsic reactivities of different Lys residues from reactions conducted at different pH conditions.  相似文献   

6.
Sb(III) competes with Zn(II) for its binding to the CCHC zinc finger domain of the NCp7 protein of HIV-1, indicating that zinc finger proteins may be targets for antimony-based drugs and thus responsible for their important pharmacological actions.  相似文献   

7.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A polyoxometalate‐based molecular triangle has been synthesized through the metal‐driven self‐assembly of covalent organic/inorganic hybrid oxo‐clusters with remote pyridyl binding sites. The new metallomacrocycle was unambiguously characterized by using a combination of 1H NMR spectroscopy, 2D diffusion NMR spectroscopy (DOSY), electrospray ionization travelling wave ion mobility mass spectrometry (ESI‐TWIM‐MS), small‐angle X‐ray scattering (SAXS) and molecular modelling. The collision cross‐sections obtained from TWIM‐MS and the hydrodynamic radii derived from DOSY are in good agreement with the geometry‐optimized structures obtained by using theoretical calculations. Furthermore, SAXS was successfully employed and proved to be a powerful technique for characterizing such large supramolecular assemblies.  相似文献   

9.
HIV‐1 nucleocapsid (NCp7) is a two Cys2HisCys zinc knuckle (N‐Zn and C‐Zn) protein that plays a key role in viral replication. NCp7 conformational dynamics is characterized by NMR relaxation dispersion and chemical exchange saturation transfer measurements. While the N‐Zn knuckle is conformationally stable, the C‐Zn knuckle interconverts on the millisecond timescale between the major state, in which the zinc is coordinated by three cysteines and a histidine, and two folded minor species (with populations around 1 %) in which one of the coordination bonds (Cys413‐Sγ‐Zn or His421‐N?2‐Zn) is hydrolyzed. These findings explain why antiretroviral thioesters specifically disrupt the C‐Zn knuckle by initial acylation of Cys413, and show that transient, sparsely‐populated (“dark”), excited states of proteins can present effective targets for rational drug design.  相似文献   

10.
We have studied the behavior of isomers and analogues by traveling wave ion mobility mass spectrometry (TWIM‐MS) using drift‐gases with varying masses and polarizabilities. Despite the reduced length of the cell (18 cm), a pair of constitutional isomers, N‐butylaniline and para‐butylaniline, with theoretical collision cross‐section values in helium (ΩHe) differing by as little as 1.2 Å2 (1.5%) but possessing contrasting charge distribution, showed baseline peak‐to‐peak resolution (Rp‐p) for their protonated molecules, using carbon dioxide (CO2), nitrous oxide (N2O) and ethene (C2H4) as the TWIM drift‐gas. Near baseline Rp‐p was also obtained in CO2 for a group of protonated haloanilines (para‐chloroaniline, para‐bromoaniline and para‐iodoaniline) which display contrasting masses and theoretical ΩHe, which differ by as much as 15.7 Å2 (19.5%) but similar charge distributions. The deprotonated isomeric pair of trans‐oleic acid and cis‐oleic acid possessing nearly identical theoretical ΩHe and ΩN2 as well as similar charge distributions, remained unresolved. Interestingly, an inversion of drift‐times were observed for the 1,3‐dialkylimidazolium ions when comparing He, N2 and N2O. Using density functional theory as a means of examining the ions electronic structure, and He and N2‐based trajectory method algorithm, we discuss the effect of the long‐range charge induced dipole attractive and short‐range Van der Waals forces involved in the TWIM separation in drift‐gases of differing polarizabilities. We therefore propose that examining the electronic structure of the ions under investigation may potentially indicate whether the use of more polarizable drift‐gases could improve separation and the overall success of TWIM‐MS analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Nomura A  Sugiura Y 《Inorganic chemistry》2002,41(14):3693-3698
Little is known about the contribution of individual zinc-ligating amino acid residues for coupling between zinc binding and protein folding in zinc finger domains. To understand such roles of each zinc ligand, four zinc finger mutant peptides corresponding to the second zinc finger domain of Sp1 were synthesized. In the mutant peptides, glycine was substituted for one of four zinc ligands. Their metal binding and folding properties were spectroscopically characterized and compared to those of the native zinc finger peptide. In particular, the electronic charge-transfer and d-d bands of the Co(II)-substituted peptide complexes were used to examine the metal coordination number and geometry. Fluorescence emission studies revealed that the mutant peptides are capable of binding zinc despite removing one ligand. Circular dichroism results clearly showed the induction of an alpha-helix by zinc binding. In addition, the structures of certain mutant zinc finger peptides were simulated by molecular dynamics calculation. The information indicates that His23 and the hydrophobic core formed between the alpha-helix and the beta-sheet play an essential role in alpha-helix induction. This report demonstrates that each ligand does not contribute equally to alpha-helix formation and coordination geometry in the zinc finger peptide.  相似文献   

12.
New metallomacrocycles composed of 2,2':6',2″-terpyridine (tpy) ligands and Ru(II) or Fe(II) transition metal ions were prepared by stepwise directed assembly and characterized by 2D diffusion NMR spectroscopy (DOSY), electrospray ionization traveling wave ion mobility mass spectrometry (ESI TWIM MS), and molecular modeling. The supramolecular polymers synthesized include a homonuclear all-Ru hexamer as well as heteronuclear hexamer and nonamer with alternating Ru/Ru/Fe metal centers. ESI MS yields several charge states from each supramacromolecule. If ESI is interfaced with TWIM MS, overlapping charge states and the isomeric components of an individual charge state are separated based on their unique drift times through the TWIM region. From experimentally measured drift times, collision cross-sections can be deduced. The collision cross-sections obtained for the synthesized supramacromolecules are in good agreement with those predicted by molecular modeling for macrocyclic structures. Similarly, the hydrodynamic radii of the synthesized complexes derived from 2D DOSY NMR experiments agree excellently with the radii calculated for macrocyclic architectures, confirming the ESI TWIM MS finding. ESI TWIM MS and 2D DOSY NMR spectroscopy provide an alternative approach for the structural analysis of supramolecules that are difficult or impossible to crystallize, such as the large macrocyclic assemblies investigated. ESI TWIM MS will be particularly valuable for the characterization of supramolecular assemblies not available in the quantity or purity required for NMR studies.  相似文献   

13.
Ion mobility mass spectrometry (IM-MS) can be used to differentiate and identify isobaric ions. To improve IM-MS resolution, the second generation of traveling wave ion mobility (TWIM) technology was launched. There were reports showing ions were heated up by TWIM. With higher ion energy, it could alter the conformation of larger ions or MS/MS experiments. To monitor the energy exchange relating to the TWIM process, the combined use of thermometer ions with unique molecular structure and theoretical calculations to determine the effective temperature of ions had been explored. In this report, the use of a simple experimental approach to estimate the variation on the ion energy that result from changing a TWIM parameter setting is demonstrated. The approach aims to achieve the same percentage of ion dissociation in a collision cell, which is part of the original instrument and located at the exit of TWIM cell. Similar to the traditional MS/MS experiments, the same level of ion dissociation could be achieved by adjusting the electrical potential that was applied to the collision cell. The higher the ion energy after the TWIM separation, the lower the electrical potential was required to achieve the same level of ion dissociation. Together with the information on the number of electrical charge in the selected ion, the difference in the required electrical potentials could be converted into electron volt of ion energy that resulted from changing the TWIM parameter setting. The results showed ion energy could be changed 1–9 eV when the parameter of TWIM was adjusted.  相似文献   

14.
Negative ion production from peptides and proteins was investigated by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Although most research on peptide and protein identification with ionization by MALDI has involved the detection of positive ions, for some acidic peptides protonated molecules are not easily formed because the side chains of acidic residues are more likely to lose a proton and form a deprotonated species. After investigating more than 30 peptides and proteins in both positive and negative ion modes, [M–H] ions were detected in the negative ion mode for all peptides and proteins although the matrix used was 2,5‐dihydroxybenzoic acid (DHB), which is a good proton donor and favors the positive ion mode production of [M+H]+ ions. Even for highly basic peptides without an acidic site, such as myosin kinase inhibiting peptide and substance P, good negative ion signals were observed. Conversely, gastrin I (1‐14), a peptide without a highly basic site, will form positive ions. In addition, spectra obtained in the negative ion mode are usually cleaner due to absence of alkali metal adducts. This can be useful during precursor ion isolation for MS/MS studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In this communication, a novel strategy for the design of a zinc finger peptide on the basis of alpha-helix substitution has been demonstrated. Sp1HM is a helix-substituted mutant for the wild-type Sp1(zf123) and its alpha-helix of each finger is replaced by that of fingers 4-6 of CF2-II. The circular dichroism spectrum of Sp1HM suggests that Sp1HM has an ordered secondary structure similar to that of Sp1(zf123). From the analyses of the DNA binding affinity and specificity by gel mobility shift assay, it is clearly indicated that Sp1HM specifically binds to the AT-rich sequence (5'-GTA TAT ATA-3') with 3.2 nM dissociation constants. Moreover, the zinc finger peptides for the sequence alternating between the AT- and GC-rich subsites can also be created by the alpha-helix substitution. This strategy is evidently effective and is also more convenient than the phage display method. Consequently, our design method is widely applicable to creating zinc finger peptides with novel binding specificities.  相似文献   

16.
The exposure of peptides and proteins to reactive hydroxyl radicals results in covalent modifications of amino acid side‐chains and protein backbone. In this study we have investigated the oxidation the isomeric peptides tyrosine–leucine (YL) and leucine–tyrosine (LY), by the hydroxyl radical formed under Fenton reaction (Fe2+/H2O2). Through mass spectrometry (MS), high‐performance liquid chromatography (HPLC‐MS) and electrospray tandem mass spectrometry (HPLC‐MSn) measurements, we have identified and characterized the oxidation products of these two dipeptides. This approach allowed observing and identifying a wide variety of oxidation products, including isomeric forms of the oxidized dipeptides. We detected oxidation products with 1, 2, 3 and 4 oxygen atoms for both peptides; however, oxidation products with 5 oxygen atoms were only present in LY. LY dipeptide oxidation leads to more isomers with 1 and 2 oxygen atoms than YL (3 vs 5 and 4 vs 5, respectively). Formation of the peroxy group occurred preferentially in the C‐terminal residue. We have also detected oxidation products with double bonds or keto groups, dimers (YL–YL and LY–LY) and other products as a result of cross‐linking. Both amino acids in the dipeptides were oxidized although the peptides showed different oxidation products. Also, amino acid residues have shown different oxidation products depending on the relative position on the dipeptide. Results suggest that amino acids in the C‐terminal position are more prone to oxidation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Explosive detection and identification play an important role in the environmental and forensic sciences. However, accurate identification of isomeric compounds remains a challenging task for current analytical methods. The combination of electrospray multistage mass spectrometry (ESI‐MSn) and high resolution mass spectrometry (HRMS) is a powerful tool for the structure characterization of isomeric compounds. We show herein that resonant ion activation performed in a linear quadrupole ion trap allows the differentiation of dinitrotoluene isomers as well as aminodinitrotoluene isomers. The explosive‐related compounds: 2,4‐dinitrotoluene (2,4‐DNT), 2,6‐dinitrotoluene (2,6‐DNT), 2‐amino‐4,6‐dinitrotoluene (2A‐4,6‐DNT) and 4‐amino‐2,6‐dinitrotoluene (4A‐2,6‐DNT) were analyzed by ESI‐MS in the negative ion mode; they produced mainly deprotonated molecules [M ? H]?. Subsequent low resolution MSn experiments provided support for fragment ion assignments and determination of consecutive dissociation pathways. Resonant activation of deprotonated dinitrotoluene isomers gave different fragment ions according to the position of the nitro and amino groups on the toluene backbone. Fragment ion identification was bolstered by accurate mass measurements performed using Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR/MS). Notably, unexpected results were found from accurate mass measurements performed at high resolution for 2,6‐DNT where a 30‐Da loss was observed that corresponds to CH2O departure instead of the expected isobaric NO? loss. Moreover, 2,4‐DNT showed a diagnostic fragment ion at m/z 116, allowing the unambiguous distinction between 2,4‐ and 2,6‐DNT isomers. Here, CH2O loss is hindered by the presence of an amino group in both 2A‐4,6‐DNT and 4A‐2,6‐DNT isomers, but nevertheless, these isomers showed significant differences in their fragmentation sequences, thus allowing their differentiation. DFT calculations were also performed to support experimental observations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The structures of peptide a- and b-type fragment ions were studied using synthetic peptides including a set of isomeric peptides, differing in the sequence location of an alanine residue labeled with 15N and uniformly with 13C. The pattern of isotope labeling of second-generation fragment ions derived via a n and b n ions (where n=4 or 5) suggested that these intermediates existed in part as macrocyclic structures, where alternative sites of ring opening gave rise to different linear forms whose simple cleavage might give rise to the observed final products. Similar conclusions were derived from combined ion mobility/tandem MS analyses where different fragmentation patterns were observed for isomeric a- or b-type ions that display different ion mobilities. These analyses were facilitated by a new approach to the processing of ion mobility/tandem MS data, from which distinct and separate product ion spectra are derived from ions that are incompletely separated by ion mobility. Finally, an example is provided of evidence for a macrocyclic structure for b n ions where n=8 or 9.  相似文献   

20.
We report the first use of CZE for absolute characterization of host cell proteins (HCPs) in recombinant human monoclonal antibodies. An electrokinetically pumped nanoelectrospray interface was used to couple CZE with a tandem mass spectrometer. Three isotopic‐labeled peptides (LSFDKDAMVAR, VDIVENQAMDTR, and LVSDEMVVELIEK) were synthesized by direct incorporation of an isotope‐labeled lysine or arginine. The heavy‐labeled peptides were spiked in the HCP digests at known concentrations. After CZE‐ESI‐MS/MS analysis, the peaks of native and isotopic‐labeled peptides were extracted with mass tolerance ≤ 5 ppm from the electropherograms, and the ratios of peak area between native and isotopic‐labeled peptides pairs were calculated. Calibration curves (the ratios of peak area versus spiked peptide amount) with R2 values of 0.999, 0.997, and 0.999 were obtained for the three HCP peptides, and the absolute amounts of the three proteins present were determined to be at the picomole level in a 20 μg sample of digested HCPs. The target proteins were present at the 7–30 ppt level in the purified HCP samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号