首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Liquid marbles are emergent microreactors owing to their isolated environment and the flexibility of materials used. Plasmonic liquid marbles (PLMs) are demonstrated as the smallest spectroelectrochemical microliter-scale reactor for concurrent spectro- and electrochemical analyses. The three-dimensional Ag shell of PLMs are exploited as a bifunctional surface-enhanced Raman scattering (SERS) platform and working electrode for redox process modulation. The combination of SERS and electrochemistry (EC) capabilities enables in situ molecular read-out of transient electrochemical species, and elucidate the potential-dependent and multi-step reaction dynamics. The 3D configuration of our PLM-based EC-SERS system exhibits 2-fold and 10-fold superior electrochemical and SERS performance than conventional 2D platforms. The rich molecular-level electrochemical insights and excellent EC-SERS capabilities offered by our 3D spectroelectrochemical system are pertinent in charge transfer processes.  相似文献   

2.
Colloidosomes are robust microcapsules attractive for molecular sensing because of their characteristic micron size, large specific surface area, and dual‐phase stability. However, current colloidosome sensors are limited to qualitative fluorogenic receptor‐based detection, which restrict their applicability to a narrow range of molecules. Here, we introduce plasmonic colloidosome constructed from Ag nanocubes as an emulsion‐based 3D SERS platform. The colloidosomes exhibit excellent mechanical robustness, flexible size tunability, versatility to merge, and ultrasensitivity in SERS quantitation of food/industrial toxins down to sub‐femtomole levels. Using just 0.5 μL of sample volumes, our plasmonic colloidosomes exhibit >3000‐fold higher SERS sensitivity over conventional suspension platform. Notably, we demonstrate the first high‐throughput multiplex molecular sensing across multiple liquid phases.  相似文献   

3.
Molecular‐level airborne sensing is critical for early prevention of disasters, diseases, and terrorism. Currently, most 2D surface‐enhanced Raman spectroscopy (SERS) substrates used for air sensing have only one functional surface and exhibit poor SERS‐active depth. “Aerosolized plasmonic colloidosomes” (APCs) are introduced as airborne plasmonic hotspots for direct in‐air SERS measurements. APCs function as a macroscale 3D and omnidirectional plasmonic cloud that receives laser irradiation and emits signals in all directions. Importantly, it brings about an effective plasmonic hotspot in a length scale of approximately 2.3 cm, which affords 100‐fold higher tolerance to laser misalignment along the z‐axis compared with 2D SERS substrates. APCs exhibit an extraordinary omnidirectional property and demonstrate consistent SERS performance that is independent of the laser and analyte introductory pathway. Furthermore, the first in‐air SERS detection is demonstrated in stand‐off conditions at a distance of 200 cm, highlighting the applicability of 3D omnidirectional plasmonic clouds for remote airborne sensing in threatening or inaccessible areas.  相似文献   

4.
Model structures of 1,3,5‐triarylbenzenes with a substituted benzene core linked to thienyl or 3,4‐ethylenedioxythienyl (EDOT) terminal groups are studied by electrochemical and in situ ESR/UV/Vis/NIR spectroelectrochemical techniques. Oxidative polymerization of the monomers results in C? C coupling of the thiophene moieties in the 5‐position, forming dimeric structures with bithiophene linkers as the first step. Both the doubly charged protonated dimer and the new dimer formed after proton release are studied in detail for 2,4,6‐tris[2‐(3,4‐ethylenedioxythienyl)]‐1‐methoxybenzene. Quite high stability of the doubly charged σ dimer formed on oxidation with unusual redox behavior at the electrode is observed. Density functional calculations of the molecular structure as well as spectroscopic and electronic properties of charged states in 1,3,5‐triarylbenzene derivatives in the monomeric, dimeric, and oligomeric form are presented. The complex spectroelectrochemical response of a thin solid film formed on the electrode surface upon potentiodynamic polymerization indicates the existence of different charge states of oligomeric structures within the solid matrix.  相似文献   

5.
The one‐dimensional (1D) transition‐metal oxide MoO3 belt is synthesized and characterized with X‐ray diffraction, scanning electron microscopy, and Raman spectroscopy. Charge‐transfer‐(CT) enhanced Raman scattering of 4‐mercaptobenzoic acid (4‐MBA) on a 1D MoO3 belt was investigated experimentally and theoretically. The chemical enhancement of surface‐enhanced Raman scattering (SERS) of 4‐MBA on the MoO3 belt by CT is in the order of 103. The SERS of 4‐MBA was investigated theoretically by using a quantum chemical method. The remote SERS of 4‐MBA along the 1D MoO3 belt (the light excitation to one side of the MoO3 belt, and the SERS spectrum is collected on the other side of the MoO3 belt) is also shown experimentally, which provides potential applications of SERS. The incident polarization dependence of remote SERS spectra has also been investigated experimentally.  相似文献   

6.
Interfacial charge transfer (CT) is of interest owing to its effect on the performance of molecular photovoltaic (PV) devices. The characteristics and structures of interfacial materials, such as TiO2 nanoparticles (NPs) in some solar cells, are employed to adjust the CT process. In this study, three kinds of interfacial systems, including a solar cell‐like TiO2‐Ag‐ p‐mercaptopyridine (MPY)‐ iron phthalocyanine (FePc) system, are compared to investigate the interfacial CT process using surface‐enhanced Raman scattering (SERS) spectroscopy. The SERS results show the significance of TiO2 NPs in the system on altering the direction and path of the interfacial CT, which is closely associated with the CT enhancement contribution to SERS in such an interfacial system. SERS spectroscopy is expected to be a promising technique for the exploration and estimation of the interfacial CT behavior in PV devices, which may further extend the applications of SERS in the field of solar cells.  相似文献   

7.
We present a strategy to fabricate nanostructured microarrays ready to perform a dual read‐out, namely electrochemical (EC) as well as surface‐enhanced Raman spectroscopy (SERS) based detection of DNA hydridization. A polystyrene nanobeads monolayer assembly, obtained by means of a Langmuir Blodgett type technique, followed by electrochemical Au deposition, was employed to construct homogeneous nanostructures in the form of inverse‐opal nanovoids on a 32‐electrode Au microarray chip. Characterization of the obtained nanostructured electrodes of the array by means of cyclic voltammetry demonstrated high reproducibility of the surface modification process. The performance of the obtained array platform was investigated by modifying the microarray electrodes with three different oligonucleotide capture probes using a previously developed potential‐assisted surface modification protocol. Two ferrocene‐labeled target DNA sequences and one target RNA sequence with a Texas red label were detected electrochemically and via SERS, respectively.  相似文献   

8.
3D plasmonic colloidosomes are superior SERS sensors owing to their high sensitivity and excellent tolerance to laser misalignment. Herein, we incorporate plasmonic colloidosomes in a microfluidic channel for online SERS detection. Our method resolves the poor signal reproducibility and inter‐sample contamination in the existing online SERS platforms. Our flow system offers rapid and continuous online detection of 20 samples in less than 5 min with excellent signal reproducibility. The isolated colloidosomes prevent cross‐sample and channel contamination, allowing accurate quantification of samples over a concentration range of five orders of magnitude. Our system demonstrates high‐resolution multiplex detection with fully preserved signal and Raman features of individual analytes in a mixture. High‐throughput multi‐assay analysis is performed, which highlights that our system is capable of rapid identification and quantification of a sequence of samples containing various analytes and concentrations.  相似文献   

9.
Plasmonic nanomaterials possessing large‐volume, high‐density hot spots with high field enhancement are highly desirable for ultrasensitive surface‐enhanced Raman scattering (SERS) sensing. However, many as‐prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two‐step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi‐periodic cloud‐like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large‐area accessible dense hot spots. The optimized 3D‐structured SERS substrate exhibits high‐quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10?9 M. Furthermore, the as‐prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10?7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large‐area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS‐based sensors.  相似文献   

10.
Over the past few years, two‐dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two‐component molecular networks with a 3‐fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic‐acid‐terminated alkyl chains. The hydrogen‐bonding partner‐recognition‐induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two‐component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces.  相似文献   

11.
The synthesis of novel tetra‐substituted manganese and indium phthalocyanines was achieved by cyclotetramerization of corresponding phthalonitrile derivative. The new compounds have been characterized by using UV‐vis, IR, 1H NMR and mass spectroscopic data. Spectroelectrochemical characterization of an indium phthalocyanine complex was performed for the first time in this paper and its electrochemical and spectroelectrochemical responses were compared with manganese phthalocyanine, bearing a redox active metal center. Electrochemical and spectroelectrochemical measurements exhibit that incorporation of redox active metal ion, MnIII, instead of InIII into the phthalocyanine core extends the redox capabilities of the complex including the metal‐based reduction couples of the metal center and affect the aggregation behavior of the complexes. Presence of molecular oxygen in the electrolyte system affects the voltammetric and spectroelectrochemical responses of the phthalocyanines due to the interaction between the complexes and molecular oxygen. MnPc and InPc formed µ‐oxo species and this reaction changed the electrochemical and optic responses of the complexes, which are desired properties for sensor and electrocatalytic applications of a material. An in situ electrocolorimetric method has been applied to investigate the color of the electro‐generated anionic and cationic forms of the complexes for possible electrochromatic applications and for clarify the interaction mechanism of the MnPc with molecular oxygen.  相似文献   

12.
《Electroanalysis》2006,18(18):1771-1777
The electrochemical conversion of N‐substituted phenoxazines (NSP's) bearing a CH2CH2? X substitute (where X?OH, COOH, CH2NH2, CH2SO3H, CH2NHCOR) was investigated using cyclic voltammetry on a bulk gold electrode and a thin‐layer spectroelectrochemical cell. The electrochemical oxidation of NSP's on the gold electrode was quasi‐reversible and proceeded in a diffusion‐controlled regime. The formal redox potential of NSP's covered the range from 0.39 to 0.45 V vs. SCE. The electrochemical oxidation of NSP's in the thin‐layer spectroelectrochemical cell produced radical cations that showed absorbance at 385, 410 and 530 nm. Electrochemical conversion fitted the general voltammetric current‐potential equation of a reversible wave, whereas electrolysis at constant potential showed a typical Cottrell behavior. Combining of NSP's with a biologically‐relevant theophylline molecule did not change electrochemical and spectral properties of the phenoxazine core. Theophylline enlarged with NSP's demonstrated electrochemical and biocatalytic behavior similar to that of NSP's. The investigated NSP's possess electrochemical and spectral properties that are useful as biomolecular labels for electroanalysis.  相似文献   

13.
Surface‐enhanced Raman spectroscopy (SERS) is an attractive tool for the sensing of molecules in the fields of chemical and biochemical analysis as it enables the sensitive detection of molecular fingerprint information even at the single‐molecule level. In addition to traditional coinage metals in SERS analysis, recent research on noble‐metal‐free materials has also yielded highly sensitive SERS activity. This Minireview presents the recent development of noble‐metal‐free materials as SERS substrates and their potential applications, especially semiconductors and emerging graphene‐based nanostructures. Rather than providing an exhaustive review of this field, possible contributions from semiconductor substrates, characteristics of graphene enhanced Raman scattering, as well as effect factors such as surface plasmon resonance, structure and defects of the nanostructures that are considered essential for SERS activity are emphasized. The intention is to illustrate, through these examples, that the promise of noble‐metal‐free materials for enhancing detection sensitivity can further fuel the development of SERS‐related applications.  相似文献   

14.
《Electroanalysis》2006,18(3):267-274
In this paper, we describe a simple and effective infrared (IR) spectroelectrochemical cell for detecting species generated from an electrochemical system featuring low‐IR‐reflectivity electrodes. The IR detection mode of attenuated total reflection (ATR) was employed to construct the spectroelectrochemical cell. Two kinds of electrodes, platinum (Pt) and screen‐printed carbon (SPC), were used to examine the performance of this new cell in detection of electroactive species generated by cyclic voltammetry. Because data generated from highly reflective electrodes are available in the literature, Pt electrode was used to characterize the performances of the developed spectroelectrochemical cell. Results indicated that species generated electrochemically can be observed readily and their responses were comparable to those described in the literature. The cell volume could be lower than 300 μL, which suggests that this approach may be very useful to obtain chemical information during electrochemistry for biological fluids with limited sample volumes. By examining the electrochemical behavior of several amino acids using both Pt and SPC electrodes, the redox behaviors can be readily observed indicating a new spectroelectrochemical cell was successfully developed for the purpose of using of SPC electrode.  相似文献   

15.
Inspired by aphids, liquid marbles have been studied extensively and have found application as isolated microreactors, as micropumps, and in sensing. However, current liquid‐marble‐based sensing methodologies are limited to qualitative colorimetry‐based detection. Herein we describe the fabrication of a plasmonic liquid marble as a substrate‐less analytical platform which, when coupled with ultrasensitive SERS, enables simultaneous multiplex quantification and the identification of ultratrace analytes across separate phases. Our plasmonic liquid marble demonstrates excellent mechanical stability and is suitable for the quantitative examination of ultratrace analytes, with detection limits as low as 0.3 fmol, which corresponds to an analytical enhancement factor of 5×108. The results of our simultaneous detection scheme based on plasmonic liquid marbles and an aqueous–solid–organic interface quantitatively tally with those found for the individual detection of methylene blue and coumarin.  相似文献   

16.
The objective of this work is to elucidate the electrochemical and corresponding optical properties of 8‐hydroxypyrene‐1,3,6‐trisulfonic acid (HPTS), using optically transparent electrodes, thereby deducing its usefulness as a model compound for spectroelectrochemical sensor development. Three pH levels were tested to determine optimal solution conditions for optical signal modulation. The electrolysis of HPTS follows an ECE mechanism, presumably resulting in the formation of a dihydroxy/dione derivative, and modulates the optical response at 405 and 460 nm wavelengths for pH 5 solutions. HPTS is a good candidate for spectroelectrochemical sensor research.  相似文献   

17.
A simple bifunctional surface‐enhanced Raman scattering (SERS) assay based on primer self‐generation strand‐displacement polymerization (PS‐SDP) is developed to detect small molecules or proteins in parallel. Triphosphate (ATP) and lysozyme are used as the models of small molecules and proteins. Compared to traditional bifunctional methods, the method possesses some remarkable features as follows: 1) by virtue of the simple PS‐SDP reaction, a bifunctional aptamer assembly binding of trigger 1 and trigger 2 was used as a functional structure for the simultaneous sensing of ATP or lysozyme. 2) The concept of isothermal amplification bifunctional detection has been first introduced into SERS biosensing applications as a signal‐amplification tool. 3) The problem of high background induced by excess bio‐barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal‐output products and massive of hairpin DNA binding with SERS active bio‐barcodes relied on Au nanoparticles (Au NPs), SERS signal is significantly enhanced. Overall, with multiple amplification steps and one magnetic‐separation procedure, this flexible biosensing system exhibited not only high sensitivity and specificity, with the detection limits of ATP and lysozyme of 0.05 nM and 10 fM , respectively.  相似文献   

18.
《Electroanalysis》2018,30(1):84-93
Electrocatalytic reduction of CO2 to formate on carbon based electrodes is known to suffer from low electrochemical reaction activity and product selectivity. Pd/three‐dimensional graphene (Pd/3D‐RGO), In/3D‐RGO and Pd‐In/3D‐RGO for the electrochemical reduction of CO2 were prepared by a mild method that combines chemical and hydrothermal. The metal/3D‐graphenes (metal/3D‐RGO) were characterized by scanning electron microscopy, X‐ray diffraction, transmission electron microscopy and X‐ray photoelectron spectroscopy (XPS). Cyclic voltammetry and the ion chromatography were performed to investigate the electrochemical performance of the metal/3D‐RGO. The morphology and dispersion of metal/3D‐RGO are 3D structure with amount of interconnected pores with metal NPs loading on the fold. And the Pd0.5‐In0.5/3D‐RGO show excellent surface performance with well dispersion and smallest particle size (12.8 nm). XPS reveal that binding energy of Pd (In) NPs is shifted to negative energy, for the metal lose electrons in metal and combine with C, which is demonstrated in the HNO3 experiment. The peak potential of Pd0.5‐In0.5/3D‐RGO is −0.70 V (vs. Ag/AgCl), which is more positive than In1.0/3D‐RGO (−0.73 V) and Pd1.0/3D‐RGO (−1.2 V). The highest faradaic efficiency (85.3 %) happens in Pd0.5‐In0.5/3D‐RGO at −1.6 V vs. Ag/AgCl. In these experiments, the special structure that metal NPs combine with C and the bimetal NPs give a direction to convert CO2 to formate.  相似文献   

19.
The C3‐symmetric star‐shaped phenothiazene‐substituted truxene 1 was reacted with the electron acceptors tetracyanoethylene (TCNE) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The cycloaddition–retroelectrocyclization reaction yields the conjugates 2 and 3 . A combination of spectral, electrochemical, and photophysical investigations of 2 and 3 reveals that the functionalization of the triple bond has a pronounced effect on their ground and excited‐state interactions. Specifically, the existence of strong ground‐state interactions between phenothiazine and the electron‐accepting groups results in charge‐transfer states, while subsequent ultrafast charge separation yields electron transfer products. This is unprecedented not only in phenothiazine chemistry but also in tetracyanobutadiene‐ and dicyanoquinodimethane‐derived donor–acceptor conjugates. Additionally, by manipulating spectroelectrochemical data, a spectrum of the charge‐separated species is construed for the first time, and shown to be highly useful in interpreting the rather complex transient spectra.  相似文献   

20.
Column electrodes pretreated through oxidation–reduction cycles were traditionally used in electrochemical surface‐enhanced Raman scattering (SERS). In this study, a disposable screen‐printed carbon electrode was introduced into in situ electrochemical SERS through the electrodeposition of dendritic gold/silver nanoparticles (Au/AgNPs) onto the surface of the carbon working electrode to induce the SERS enhancement effect on the electrode. Scanning electron microscopy images showed that dendritic Au/AgNPs nanostructures could be fabricated under appropriate electrodeposition conditions and could present a minimum SERS factor of 4.25 × 105. Furthermore, the absorbed behavior of 4‐mercaptopyridine was investigated under different potentials. The adsorption configuration was inferred to transform from ‘vertical’ to ‘lying‐flat’. The proposed new electrode combined with a portable Raman spectrometer could be useful in the identifying products or intermediates during electrochemical synthesis or electrochemical catalysis in in situ electrochemical SERS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号