首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
A combination of self‐complementary π–π‐stacking interactions and metallophilic interactions triggered the self‐assembly of a new digold(I) metallo‐tweezer in the presence of several types of M+ ions. Titrations by fluorescence spectroscopy enabled the determination of the association constants of the resulting inclusion duplex complexes.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Here we report on how metastable supramolecular gels can be formed through seeded self‐assembly of multicomponent gelators. Hydrazone‐based gelators decorated with non‐ionic and anionic groups are formed in situ from hydrazide and aldehyde building blocks, and lead through multiple self‐sorting processes to the formation of heterogeneous gels approaching thermodynamic equilibrium. Interestingly, the addition of seeds composing of oligomers of gelators bypasses the self‐sorting processes and accelerates the self‐assembly along a kinetically favored pathway, resulting in homogeneous gels of which the network morphologies and gel stiffness are markedly different from the thermodynamically more stable gel products. Importantly, over time, these metastable homogeneous gel networks are capable of converting into the thermodynamically more stable state. This seeding‐driven formation of out‐of‐equilibrium supramolecular structures is expected to serve as a simple approach towards functional materials with pathway‐dependent properties.  相似文献   

17.
We report three self‐assembled iron complexes that comprised an anti‐parallel open form (o‐ L anti), a parallel open form (o‐ L syn), and a closed form (c‐ L ) of diarylethene conformers. Under kinetic control, FeII2(o‐ L anti)3 was isolated, which exhibited a dinuclear structure with diamagnetic properties. Under light‐irradiation control, FeII2(c‐ L )3 was prepared and exhibited paramagnetism and spin‐crossover behaviour. Under thermodynamic control and in the presence of indispensable [FeIII(Tp*)(CN)3]?, FeII2(o‐ L anti)3 and FeII2(c‐ L )3 transformed into tetranuclear FeIII2FeII2(o‐ L syn)2, which exhibited complete spin‐crossover behaviour at T1/2=353 K.  相似文献   

18.
19.
The newly developed oligophenylenevinylene (OPV)‐based fluorescent (FL) chiral chemosensor (OPV‐Me) for the representative enantiomeric guest, 1,2‐cyclohexanedicarboxylic acid (1,2‐CHDA: RR ‐ and SS ‐form) showed the high chiral discrimination ability, resulting in the different aggregation modes of OPV‐Me self‐assembly: RR ‐CHDA directed the fibrous supramolecular aggregate, whereas SS ‐CHDA directed the finite aggregate. The consequent FL intensity toward RR ‐CHDA was up to 30 times larger than that toward SS ‐CHDA. Accordingly, highly enantioselective recognition was achieved. Application to the chirality sensing was also possible: OPV‐Me exhibited a linear relationship between the FL intensity and the enantiomeric excess through the morphological development of stereocomplex aggregates. These results clearly show that the chiral recognition ability is manifested by the amplification cascade of the chirality difference through self‐assembly.  相似文献   

20.
Dispersions of block copolymer fibres in water have many potential applications and can be obtained by polymerization‐induced self‐assembly (PISA), but only under very restricted experimental conditions. In order to enlarge this experimental window, we introduced a supramolecular moiety, a hydrogen‐bonded bis‐urea sticker, in the macromolecular reversible addition fragmentation chain transfer (RAFT) agent to drive the morphology of the nano‐objects produced by RAFT‐mediated PISA towards the fibre morphology. This novel concept is tested in the synthesis of a series of poly(N,N‐dimethylacrylamide)‐b‐poly(2‐methoxyethyl acrylate) (PDMAc‐b‐PMEA) diblock copolymers prepared by dispersion polymerization in water. The results prove that the introduction of the templating bis‐urea stickers into PISA greatly promotes the formation of fibres in a large experimental window.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号