首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Triazole‐based deubiquitylase (DUB)‐resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain‐specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB‐resistant Ub probes is reported based on isopeptide‐N‐ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one‐pot, ubiquitin‐activating enzyme (E1)‐catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi‐milligram scale. Proteomic studies using label‐free quantitative (LFQ) MS indicated that the isopeptide‐N‐ethylated Ub probes may complement the triazole‐based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.  相似文献   

2.
Identification of arsenic‐binding proteins is important for understanding arsenic health effects and for developing arsenic‐based therapeutics. We report here a strategy for the capture and identification of arsenic‐binding proteins in living cells. We designed an azide‐labeled arsenical, p‐azidophenylarsenoxide (PAzPAO), to serve bio‐orthogonal functions: the trivalent arsenical group binds to cellular proteins in situ, and the azide group facilitates click chemistry with dibenzylcyclooctyne. The selective and efficient capture of arsenic‐binding proteins enables subsequent enrichment and identification by shotgun proteomics. Applications of the technique are demonstrated using the A549 human lung carcinoma cells and two in vitro model systems. The technique enables the capture and identification of 48 arsenic‐binding proteins in A549 cells incubated with PAzPAO. Among the identified proteins are a series of antioxidant proteins (e.g., thioredoxin, peroxiredoxin, peroxide reductase, glutathione reductase, and protein disulfide isomerase) and glyceraldehyde‐3‐phosphate dehydrogenase. Identification of these functional proteins, along with studies of arsenic binding and enzymatic inhibition, points to these proteins as potential molecular targets that play important roles in arsenic‐induced health effects and in cancer treatment.  相似文献   

3.
Deubiquitinases (DUBs) are a family of enzymes that regulate the ubiquitin signaling cascade by removing ubiquitin from specific proteins in response to distinct signals. DUBs that belong to the metalloprotease family (metalloDUBs) contain Zn2+ in their active sites and are an integral part of distinct cellular protein complexes. Little is known about these enzymes because of the lack of specific probes. Described here is a Ub‐based probe that contains a ubiquitin moiety modified at its C‐terminus with a Zn2+ chelating group based on 8‐mercaptoquinoline, and a modification at the N‐terminus with either a fluorescent tag or a pull‐down tag. The probe is validated using Rpn11, a metalloDUB found in the 26S proteasome complex. This probe binds to metalloDUBs and efficiently pulled down overexpressed metalloDUBs from a HeLa cell lysate. Such probes may be used to study the mechanism of metalloDUBs in detail and allow better understanding of their biochemical processes.  相似文献   

4.
AXL has been defined as a novel target for cancer therapeutics. However, only a few potent and selective inhibitors targeting AXL are available to date. Recently, our group has developed a lead compound, 9im, capable of displaying potent and specific inhibition of AXL. To further identify the cellular on/off targets, in this study, competitive affinity‐based proteome profiling was carried out, leading to the discovery of several unknown cellular targets such as BCAP31, LPCAT3, POR, TM9SF3, SCCPDH and CANX. In addition, trans‐cyclooctene (TCO) and acedan‐containing probes were developed to image the binding between 9im and its target proteins inside live cells and tumor tissues. These probes would be useful tools in the detection of AXL in various biosystems.  相似文献   

5.
The attachment of ubiquitin (Ub) chains of various length to proteins is a prevalent posttranslational modification in eukaryotes. The fate of a modified protein is determined by Ub‐binding proteins (UBPs), which interact with Ub chains in a linkage‐selective manner. However, the impact and functional consequences of chain length on the binding selectivity of UBPs remain mostly elusive. We have generated Ub chains of defined length and linkage by using click chemistry and GELFrEE fractionation. These defined polymers were used in affinity‐based enrichment assays to identify length‐ and linkage‐selective interaction partners on a proteome‐wide scale. For the first time, it is revealed that the length of a Ub chain generally has a major impact on its ability to be selectively recognized by UBPs.  相似文献   

6.
Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid‐state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high‐sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in‐cell solution‐state NMR spectroscopy due to molecular size limitations.  相似文献   

7.
Vicinal‐sulfydryl‐containing peptides/proteins (VSPPs) play a crucial role in human pathologies. Fluorescent probes that are capable of detecting intracellular VSPPs in vivo would be useful tools to explore the mechanisms of some diseases. In this study, by regulating the spatial separation of two maleimide groups in a fluorescent dye to match that of two active cysteine residues contained in the conserved amino acid sequence (–CGPC–) of human thioredoxin, two active‐site‐matched fluorescent probes, o‐Dm‐Ac and m‐Dm‐Ac, were developed for real‐time imaging of VSPPs in living cells. As a result, the two probes can rapidly respond to small peptide models and reduced proteins, such as WCGPCK (W‐6), WCGGPCK (W‐7), and WCGGGPCK (W‐8), reduced bovine serum albumin (rBSA), and reduced thioredoxin (rTrx). Moreover, o‐Dm‐Ac displays a higher binding sensitivity with the above‐mentioned peptides and proteins, especially with W‐7 and rTrx. Furthermore, o‐Dm‐Ac was successfully used to rapidly and directly detect VSPPs both in vitro and in living cells. Thus, a novel probe‐design strategy was proposed and the synthesized probe applied successfully in imaging of target proteins in situ.  相似文献   

8.
Brain copper imbalance plays an important role in amyloid‐β aggregation, tau hyperphosphorylation, and neurotoxicity observed in Alzheimer's disease (AD). Therefore, the administration of biocompatible metal‐binding agents may offer a potential therapeutic solution to target mislocalized copper ions and restore metallostasis. Histidine‐containing peptides and proteins are excellent metal binders and are found in many natural systems. The design of short peptides showing optimal binding properties represents a promising approach to capture and redistribute mislocalized metal ions, mainly due to their biocompatibility, ease of synthesis, and the possibility of fine‐tuning their metal‐binding affinities in order to suppress unwanted competitive binding with copper‐containing proteins. In the present study, three peptides, namely HWH , HKCH , and HAH , have been designed with the objective of reducing copper toxicity in AD. These tripeptides form highly stable albumin‐like complexes, showing higher affinity for CuII than that of Aβ(1‐40). Furthermore, HWH , HKCH , and HAH act as very efficient inhibitors of copper‐mediated reactive oxygen species (ROS) generation and prevent the copper‐induced overproduction of toxic oligomers in the initial steps of amyloid aggregation in the presence of CuII ions. These tripeptides, and more generally small peptides including the sequence His‐Xaa‐His at the N‐terminus, may therefore be considered as promising motifs for the future development of new and efficient anti‐Alzheimer drugs.  相似文献   

9.
Many biochemical pathways involving nerve growth factor (NGF), a neurotrophin with copper(II) binding abilities, are regulated by the ubiquitin (Ub) proteasome system. However, whether NGF binds Ub and the role played by copper(II) ions in modulating their interactions have not yet been investigated. Herein NMR spectroscopy, circular dichroism, ESI‐MS, and titration calorimetry are employed to characterize the interactions of NGF with Ub. NGF1–14, which is a short model peptide encompassing the first 14 N‐terminal residues of NGF, binds the copper‐binding regions of Ub (KD=8.6 10?5 m ). Moreover, the peptide undergoes a random coil–polyproline type II helix structural conversion upon binding to Ub. Notably, copper(II) ions inhibit NGF1–14/Ub interactions. Further experiments performed with the full‐length NGF confirmed the existence of a copper(II)‐dependent association between Ub and NGF and indicated that the N‐terminal domain of NGF was a valuable paradigm that recapitulated many traits of the full‐length protein.  相似文献   

10.
The conjugation of ubiquitin (Ub) to proteins is involved in the regulation of many processes. The modification serves as a recognition element in trans, in which downstream effectors bind to the modified protein and determine its fate and/or function. A polyUb chain that is linked through internal lysine (Lys)‐48 of Ub and anchored to an internal Lys residue of the substrate has become the accepted “canonical” signal for proteasomal targeting and degradation. However, recent studies show that the signal is far more diverse and that chains based on other internal linkages, as well as linear or heterologous chains made of Ub and Ub‐like proteins and even monoUb, are recognized by the proteasome. In addition, chains linked to residues other than internal Lys were described, all challenging the current paradigm.  相似文献   

11.
Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea‐grafted polyethylenimine (πPEI) with affinity‐purified His‐tagged proteins pre‐organized onto a nickel‐immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His‐tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His‐tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single‐chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions.  相似文献   

12.
Constraining a molecule in its bioactive conformation via macrocyclization represents an attractive strategy to rationally design functional chemical probes. While this approach has been applied to enzyme inhibitors or receptor antagonists, to date it remains unprecedented for bifunctional molecules that bring proteins together, such as PROTAC degraders. Herein, we report the design and synthesis of a macrocyclic PROTAC by adding a cyclizing linker to the BET degrader MZ1. A co‐crystal structure of macroPROTAC‐1 bound in a ternary complex with VHL and the second bromodomain of Brd4 validated the rational design. Biophysical studies revealed enhanced discrimination between the second and the first bromodomains of BET proteins. Despite a 12‐fold loss of binary binding affinity for Brd4, macroPROTAC‐1 exhibited cellular activity comparable to MZ1. Our findings support macrocyclization as an advantageous strategy to enhance PROTAC degradation potency and selectivity between homologous targets.  相似文献   

13.
Endogenous vicinal‐dithiol‐containing proteins (VDPs) that have two thiol groups close to each other in space play a significant importance in maintaining the cellular redox microenvironment. Approaches to identify VDPs mainly rely on monitoring the different concentration of monothiol and total thiol groups or on indirect labeling of vicinal thiols by using p‐aminophenylarsenoxide ( PAO ). Our previous work has reported the direct labeling of VDPs with a highly selective receptor PAO analogue, which could realize fluorescence detection of VDPs directly in living cells. Herein, we developed a conjugated approach to expand detectable tags to nitrobenzoxadiazole (NBD), fluorescein, naphthalimide, and biotin for the synthesis of a series of probes. Different linkers have also been introduced toward conjugation of VTA2 with these functional tags. These synthesized flexible probes with various features will offer new tools for the potential identification and visualization of vicinal dithiols existing in different regions of VDPs in living cells. These probes are convenient tools for proteomics studies of various disease‐related VDPs and for the discovery of new drug targets.  相似文献   

14.
Fluorescent probes for detecting the physical properties of cellular structures have become valuable tools in life sciences. The fluorescence lifetime of molecular rotors can be used to report on variations in local molecular packing or viscosity. We used a nucleoside linked to a meso‐substituted BODIPY fluorescent molecular rotor ( dCbdp ) to sense changes in DNA microenvironment both in vitro and in living cells. DNA incorporating dCbdp can respond to interactions with DNA‐binding proteins and lipids by changes in the fluorescence lifetimes in the range 0.5–2.2 ns. We can directly visualize changes in the local environment of exogenous DNA during transfection of living cells. Relatively long fluorescence lifetimes and extensive contrast for detecting changes in the microenvironment together with good photostability and versatility for DNA synthesis make this probe suitable for analysis of DNA‐associated processes, cellular structures, and also DNA‐based nanomaterials.  相似文献   

15.
Multi‐domain proteins play critical roles in fine‐tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi‐domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA‐1 using Sortase A mediated protein ligation. We show that domain‐selective perdeuteration combined with contrast‐matched small‐angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi‐domain proteins and changes induced by ligand binding.  相似文献   

16.
Multi‐domain proteins play critical roles in fine‐tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi‐domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA‐1 using Sortase A mediated protein ligation. We show that domain‐selective perdeuteration combined with contrast‐matched small‐angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi‐domain proteins and changes induced by ligand binding.  相似文献   

17.
Phenotypically distinct cellular (sub)populations are clinically relevant for the virulence and antibiotic resistance of a bacterial pathogen, but functionally different cells are usually indistinguishable from each other. Herein, we introduce fluorescent activity‐based probes as chemical tools for the single‐cell phenotypic characterization of enzyme activity levels in Staphylococcus aureus. We screened a 1,2,3‐triazole urea library to identify selective inhibitors of fluorophosphonate‐binding serine hydrolases and lipases in S. aureus and synthesized target‐selective activity‐based probes. Molecular imaging and activity‐based protein profiling studies with these probes revealed a dynamic network within this enzyme family involving compensatory regulation of specific family members and exposed single‐cell phenotypic heterogeneity. We propose the labeling of enzymatic activities by chemical probes as a generalizable method for the phenotyping of bacterial cells at the population and single‐cell level.  相似文献   

18.
Histone deacetylase (HDAC) is a major class of deacetylation enzymes. Many HDACs exist in large protein complexes in cells and their functions strongly depend on the complex composition. The identification of HDAC‐associated proteins is highly important in understanding their molecular mechanisms. Although affinity probes have been developed to study HDACs, they were mostly targeting the direct binder HDAC, while other proteins in the complex remain underexplored. We report a DNA‐based affinity labeling method capable of presenting different probe configurations without the need for preparing multiple probes. Using one binding probe, 9 probe configurations were created to profile HDAC complexes. Notably, this method identified indirect HDAC binders that may be inaccessible to traditional affinity probes, and it also revealed new biological implications for HDAC‐associated proteins. This study provided a simple and broadly applicable method for characterizing protein‐protein interactions.  相似文献   

19.
Phage display is a powerful approach for evolving proteins and peptides with new functions, but the properties of the molecules that can be evolved are limited by the chemical diversity encoded. Herein, we report a system for incorporating non‐canonical amino acids (ncAAs) into proteins displayed on phage using the pyrrolysyl‐tRNA synthetase/tRNA pair. We improve the efficiency of ncAA incorporation using an evolved orthogonal ribosome (riboQ1), and encode a cyclopropene‐containing ncAA (CypK) at diverse sites on a displayed single‐chain antibody variable fragment (ScFv), in response to amber and quadruplet codons. CypK and an alkyne‐containing ncAA are incorporated at distinct sites, enabling the double labeling of ScFv with distinct probes, through mutually orthogonal reactions, in a one‐pot procedure. These advances expand the number of functionalities that can be encoded on phage‐displayed proteins and provide a foundation to further expand the scope of phage display applications.  相似文献   

20.
Ubiquitin (Ub) is widely distributed in eukaryotic cells as its name means. There are many kinds of Ub-like proteins (for example, SUMO, NEDD8 and ISG15) and Ub-like domains (UbLs) included in multi-domain proteins. To date, a large number of Ub-binding domains (UBDs), such as UBA, CUE, UIM, ZnF, and Pru, are coming up to us with different affinities to Ub and its homologues. The binding specificities provide the basis for controlling various cellular events as well as for delivering ubiquitinated proteins to proteasome for degradation. Structural details of these UBDs and their complexes with Ub might as well show us the delicate mechanism of Ub recognition and regulation. This review summarizes recent progresses on deciphering the structure-based Ub-binding specificities, which are the importantly fundamental elements in orchestrating the ubiquitination and deubiquitination processes in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号