首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(22):2916-2921
The doping of nitrogen into carbon quantum dots is vitally important for improved fluorescence performance. However, the synthesis of nitrogen‐doped carbon quantum dots (N‐CQDs) is usually conducted under strong acid and high temperature, which results in environmental pollution and energy consumption. Herein, the N‐CQDs were prepared by a mild one‐pot hydrothermal process. The hydrothermal reaction temperature was adjusted to control the particle size, nitrogen/carbon atomic ratio, and quantum yield. The products were water soluble with a narrow particle size distribution and good dispersion stability over a wide pH range. The N‐CQDs could penetrate into the HeLa cell nucleus without any further functionalization. Moreover, the fluorescence of N‐CQDs could be selectively quenched by Cu2+, which suggested applications for the detection of Cu2+ in human plasma.  相似文献   

2.
The doping of carbon quantum dots with nitrogen provides a promising direction to improve fluorescence performance and broaden their applications in sensing systems. Herein we report a one‐pot solvothermal synthesis of N‐doped carbon quantum dots (NCQDs) and the synthesis of a series of NCQDs with different nitrogen contents. The as‐prepared NCQDs were compared with carbon quantum dots (CQDs); the introduction of nitrogen atoms largely increased the quantum yield of NCQDs and highest emission efficiency is up to 36.3 %. The fluorescence enhancement may originate from more polyaromatic structures induced by incorporated nitrogen atoms and protonation of nitrogen atoms on dots. It was found that NCQDs can act as a multifunctional fluorescence sensing platform because they can be used to detect pH values, AgI, and FeIII in aqueous solution. The fluorescence intensity of NCQDs is inversely proportional to pH values across a broad range from 5.0 to 13.5, which indicates that NCQDs can be devised as an effective pH indicator. Selective detection of AgI and FeIII was achieved based on their distinctive fluorescence influence because AgI can significantly enhance the fluorescence whereas FeIII can greatly quench the fluorescence. The quantitative determination of AgI can be accomplished with NCQDs by using the linear relationship between fluorescence intensity of NCQDs and concentration of AgI. The sensitive detection of H2O2 was developed by taking advantage of the distinct quenching ability of FeIII and FeII toward the fluorescence of NCQDs. Cellular toxicity test showed NCQDs still retain low toxicity to cells despite the introduction of a great deal of nitrogen atoms. Moreover, bioimaging experiments demonstrated that NCQDs have stronger resistance to photobleaching than CQDs and more excellent fluorescence labeling performance.  相似文献   

3.
ZnIn2S4 microspheres (ZIS MSs) were for the first time decorated with carbon quantum dots (CQDs) and platinum nanoparticles (NPs) as dual co‐catalysts of for photocatalytic H2 production. The ZIS MSs co‐loaded with CQDs and Pt exhibited a high photocatalytic H2 production rate of 1032.2 μmol h?1 g?1 with an apparent quantum efficiency of 2.2 % (420 nm) in triethanolamine aqueous solution under visible‐light irradiation, which was much higher than the respective photocatalytic rates of pure ZIS, Pt loaded ZIS, and CQDs‐decorated ZIS. Such a great enhancement was attributed to the integrative effect of good crystallization, enhanced light absorption, high electrical conductivity of CQDs, and the vectorial electron transfer from ZIS to CQDs and Pt NPs (ZIS→CQDs→Pt).  相似文献   

4.
Colloidal quantum dots (CQDs) are attractive absorber materials for high‐efficiency photovoltaics because of their facile solution processing, bandgap tunability due to quantum confinement effect, and multi‐exciton generation. To date, all published performance records for PbS CQDs solar cells have been based on the conventional hot‐injection synthesis method. This method usually requires relatively strict conditions such as high temperature and the utility of expensive source material (pyrophoric bis(trimethylsilyl) sulfide (TMS‐S)), limiting the potential for large‐scale and low‐cost synthesis of PbS CQDs. Here we report a facile room‐temperature synthetic method to produce high‐quality PbS CQDs through inexpensive ionic source materials including Pb(NO3)2 and Na2S in the presence of triethanolamine (TEA) as the stabilizing ligand. The PbS CQDs were successfully prepared with an average particle size of about 5 nm. Solar cells based on the as‐synthesized PbS CQDs show a preliminary power conversion efficiency of 1.82%. This room‐temperature and low‐cost synthesis of PbS CQDs will further benefit the development of solution‐processed CQD solar cells.  相似文献   

5.
Carbon quantum dots (CQDs) have recently attracted significant attention for both their fundamental science and technological applications as a new class of fluorescent zero‐dimensional nanomaterials with a size below 10 nm. However, the reported methods of synthesis were generally less suitable for the large‐scale production of the CQDs with high‐fluorescent quantum yield (QY). In the paper, a novel one‐pot microwave‐assisted drying synthesis approach was presented to prepare CQDs with high QY of 61.3 % for the first time. The production yield of CQDs was 35±3 % in weight. The as‐prepared CQDs were characterized by various techniques such as TEM, AFM, XRD, XPS, FTIR spectroscopy, UV/Vis absorption spectroscopy, and fluorescence spectroscopy. The results showed that the high QY of CQDs was largely attributed to the dual doping of nitrogen and sulphur into CQDs. Such CQDs were then used as live‐cell imaging reagents due to their high QY, good water dispersibility, fine biocompatibility, high photostability, and low cytotoxicity.  相似文献   

6.
Access to high‐quality, easily dispersible carbon quantum dots (CQDs) is essential in order to fully exploit their desirable properties. Copolymers based on N‐acryloyl‐D ‐glucosamine and acrylic acid prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization are self‐assembled into micelle‐like nanoreactors. After a facile graphitization process (170 °C, atmospheric pressure), each micellar template is transformed into a CQD through a 1:1 copy process. These high‐quality CQDs (quantum yield=22 %) with tunable sizes (2–5 nm) are decorated by carboxylic acid moieties and can be spontaneously redispersed in water and polar organic solvents. This preparation method renders the mass production of multifunctional CQDs possible. To demonstrate the versatility of this approach, CQDs hybridized TiO2 nanoparticles with enhanced photocatalytic activity under visible‐light have been prepared.  相似文献   

7.
New hybrid materials consisting of ZnO nanorods sensitized with three different biomass‐derived carbon quantum dots (CQDs) were synthesized, characterized, and used for the first time to build solid‐state nanostructured solar cells. The performance of the devices was dependent on the functional groups found on the CQDs. The highest efficiency was obtained using a layer‐by‐layer coating of two different types of CQDs.  相似文献   

8.
Functional nanoprobes which detect specific food hazards quickly and simply are still in high demand in the field of food-safety inspection research. In the present work, a dual-emission metal-organic framework-based ratiometric fluorescence probe was integrated to detect Cu2+ and Pb2+ with rapidness and ease. Specifically, quantum dots (QDs) and carbon quantum dots (CQDs) were successfully embedded into zeolitic imidazolate framework-67 (ZIF-67) to function as a novel ratiometric fluorescent sensing composite. The ratiometric fluorescence signal of CQDs/QDs@ZIF-67 was significantly aligned with the concentration of metal ions to give an extremely low detection limit of 0.3324 nM. The highly sensitive and selective CQDs/QDs@ZIF-67 composite showed potential for the rapid and cost-effective detection of two metal ions.  相似文献   

9.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.  相似文献   

10.
Electrochemistry belongs to an important branch of chemistry that deals with the chemical changes produced by electricity and the production of electricity by chemical changes. Therefore, it can not only act a powerful tool for materials synthesis, but also offer an effective platform for sensing and catalysis. As extraordinary zero‐dimensional materials, carbon‐based quantum dots (CQDs) have been attracting tremendous attention due to their excellent properties such as good chemical stability, environmental friendliness, nontoxicity and abundant resources. Compared with the traditional methods for the preparation of CQDs, electrochemical (EC) methods offer advantages of simple instrumentation, mild reaction conditions, low cost and mass production. In return, CQDs could provide cost‐effective, environmentally friendly, biocompatible, stable and easily‐functionalizable probes, modifiers and catalysts for EC sensing. However, no specific review has been presented to systematically summarize both aspects until now. In this review, the EC preparation methods of CQDs are critically discussed focusing on CQDs. We further emphasize the applications of CQDs in EC sensors, electrocatalysis, biofuel cells and EC flexible devices. This review will further the experimental and theoretical understanding of the challenges and future prospective in this field, open new directions on exploring new advanced CQDs in EC to meet the high demands in diverse applications.  相似文献   

11.
A nanocomposite of CdSe quantum dots with nitrogen‐doped carbon nanotubes was prepared for enhancing the electrochemiluminescent (ECL) emission of quantum dots. With hydrogen peroxide as co‐reactant, the nanocomposite modified electrode showed a cathodic ECL emission with a starting potential of ?0.97 V (vs. Ag/AgCl) in phosphate buffer solution, which was five‐times stronger than that from pure CdSe quantum dots and three‐times stronger than that from CdSe quantum dots composited with carbon nanotubes. The latter showed a starting potential of ?1.19 V. This result led to a sensitive ECL sensing of hydrogen peroxide with good stability, acceptable reproducibility and a detection limit down to 2.1×10?7 mol L?1. Nitrogen‐doped carbon nanotubes could be used as a good material for the construction of sensitive ECL biosensors for chemical and biochemical analysis.  相似文献   

12.
The synthesis of a novel water‐soluble Mn‐doped CdTe/ZnS core‐shell quantum dots using a proposed ultrasonic assistant method and 3‐mercaptopropionic acid (MPA) as stabilizer is descried. To obtain a high luminescent intensity, post‐preparative treatments, including the pH value, reaction temperature, reflux time and atmosphere, have been investigated. For an excellent fluorescence of Mn‐doped CdTe/ZnS, the optimal conditions were pH 11, reflux temperature 100°C and reflux time 3 h under N2 atmosphere. While for phosphorescent Mn‐doped CdTe/ZnS QDs, the synthesis at pH 11, reflux temperature 100°C and reflux time 3 h under air atmosphere gave the best strong phosphorescence. The characterizations of Mn‐doped CdTe/ZnS QDs were also identified using AFM, IR, powder XRD and thermogravimetric analysis. The data indicated that the photochemical stability and the photoluminescence of CdTe QDs are greatly enhanced by the outer inorganic ZnS shell, and the doping Mn2+ ions in the as‐prepared quantum dots contribute to strong luminescence. The strong luminescence of Mn‐doped CdTe/ZnS QDs reflected that Mn ions act as recombination centers for the excited electron‐hole pairs, attributing to the transition from the triplet state (4T1) to the ground state (6A1) of the Mn2+ ions. All the experiments demonstrated that the surface states played important roles in the optical properties of Mn‐doped CdTe/ZnS core‐shell quantum dots.  相似文献   

13.
Photoluminescent carbon and/or silicon‐based nanodots have attracted ever increasing interest. Accordingly, a myriad of synthetic methodologies have been developed to fabricate them, which unfortunately, however, frequently involve relatively tedious steps, such as initial surface passivation and subsequent functionalization. Herein, we describe a green and sustainable synthetic strategy to combine these procedures into one step and to produce highly luminescent carbon quantum dots (CQDs), which can also be easily fabricated into flexible thin films with intense luminescence for future roll‐to‐roll manufacturing of optoelectronic devices. The as‐synthesized CQDs exhibited enhanced cellular permeability and low or even noncytotoxicity for cellular applications, as corroborated by confocal fluorescence imaging of HeLa cells as well as cell viability measurements. Most strikingly, zebrafish were directly fed with CQDs for in vivo imaging, and mortality and morphologic analysis indicated ingestion of the CQDs posed no harm to the living organisms. Hence, the multifunctional CQDs potentially provide a rich pool of tools for optoelectronic and biomedical applications.  相似文献   

14.
Carbon quantum dots (CQDs) are a new class of fluorescence small carbon nanoparticles with a particle size of less than 10 nm and have vast applications in the field of bioimaging, biosensing and disease-detection. These are promising materials for nano-biotechnology since it has smaller particle size, excellent biocompatibility and excitation wavelength dependent photoluminescence (PL) behavior, photo induced electron transfer, chemical inertness and low toxicity. These materials have excellent fluorescent properties such as broad excitation spectra, narrow and tunable emission spectra, and high photostability against photo bleaching and blinking than other fluorescent semiconductor quantum dots. This review article demonstrate the recent progress in the synthesis, functionalization and technical applications of carbon quantum dots using electrochemical oxidation, combustion/thermal, chemical change, microwave heating, arc-discharge, and laser ablation methods from various natural resources. Natural carbon sources are used for the preparation of CQDs due to its low cost, environmental friendly and widely available.  相似文献   

15.
A kind of pH‐responsive carbon quantum dots?doxorubicin nanoparticles drug delivery platform (D‐Biotin/DOX‐loaded mPEG‐OAL/N‐CQDs) was designed and synthesized. The system consists of fluorescent carbon dots as cross‐linkers, and D‐Biotin worked as targeting groups, which made the system have a pH correspondence, doxorubicin hydrochloride (DOX) as the target drug, oxidized sodium alginate (OAL) as carrier materials. Ultraviolet (UV)‐Vis spectrum showed that the drug‐loading rate of DOX is 10.5%, and the drug release in vitro suggested that the system had a pH response and tumor cellular targeted, the drug release rate is 65.6% at the value of pH is 5.0, which is much higher than that at the value of pH is 7.4. The cytotoxicity test and laser confocal fluorescence imaging showed that the synthesized drug delivery system has high cytotoxicity to cancer cells, and the drug‐loaded nanoparticles could enter the cells through endocytosis.  相似文献   

16.
This study designed a “turn-off–on” fluorescence analysis method based on carbon quantum dots (CQDs) to detect metal ions and amino acids in real sample systems. CQDs were derived from green pomelo peel via a one-step hydrothermal process. The co-doped CQDs with N and S atoms imparted excellent optical properties (quantum yield = 17.31%). The prepared CQDs could be used as fluorescent “turn-off” probes to detect Fe3+ with a limit of detection of 0.086 µM, a linear detection range of 0.1–160 µM, and recovery of 83.47–106.53% in water samples. The quenched CQD fluorescence could be turned on after adding L-cysteine (L-Cys), which allowed detection of L-Cys with a detection limit of 0.34 µM and linear range of 0.4–85 µM. Recovery of L-Cys in amino acid beverage was 87.08–122.74%. Visual paper-based testing strips and cellulose/CQDs composite hydrogels could be also used to detect Fe3+ and L-Cys.  相似文献   

17.
《Mendeleev Communications》2021,31(5):647-650
Carbon quantum dots (CQDs) with an average diameter of 3 nm, exhibiting blue photoluminescence, have been obtained from commercial conductive carbon black by a cost-effective and straightforward exfoliation method using dry ball milling in the presence of sodium carbonate. As a secondary abrasive medium, sodium carbonate provides effective exfoliation of carbon black with a high degree of CQD graphitization and plays an essential role in the functionalization of CQDs with oxygen groups. Due to the low toxicity of CQDs against HeLa cancer cells (cell viability above 90% at a CQD concentration of 200 μg cm−3) and the ability to penetrate cells and emit blue light, CQDs are possibly suitable for biological imaging of cells.  相似文献   

18.
The development of large-scale synthetic methods for high quality carbon quantum dots (CQDs) is fundamental to their applications. However, the macroscopic preparation and scale up synthetic of CQDs is still in its infancy. Here, we report a facile, green, kilogram-scale synthesis of high quality fluorescent CQDs derived from poplar leaves via a one-step hydrothermal method. Notably, the throughput of CQDs can reach a level up to as high as 1.4975 kg in one pot. The structure and properties of the as-prepared CQDs were assessed through TEM, XRD, XPS and various spectroscopic methods. The obtained high quality CQDs with a photoluminescent quantum yield of 10.64% showed remarkable stability in aqueous media, rich functional groups, high photostability, consistent photoluminescence within biological pH range and low cytotoxicity. On account of these good properties, we demonstrated the multifunctional application to electrocatalytic water splitting, Fe3+ sensing and bioimaging. It showed remarkable electrocatalytic activity, Fe3+ sensitivity and good biocompatibility. This study provides a green, facile, inexpensive and large-scale method for producing high quality CQDs, which provides application value for large-scale production of CQDs.  相似文献   

19.
A core‐shell structure with CuO core and carbon quantum dots (CQDs) and carbon hollow nanospheres (CHNS) shell was prepared through facile in‐situ hydrothermal process. The composite was used for non‐enzymatic hydrogen peroxide sensing and electrochemical overall water splitting. The core‐shell structure was established from the transmission electron microscopy image analysis. Raman and UV‐Vis spectroscopy analysis confirmed the interaction between CuO and CQDs. The electrochemical studies showed the limit of detection and sensitivity of the prepared composite as 2.4 nM and 56.72 μA μM?1 cm?2, respectively. The core‐shell structure facilitated better charge transportation which in turn exhibited elevated electro‐catalysis towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting. The overpotential of 159 mV was required to achieve 10 mA cm?2 current density for HER and an overpotential of 322 mV was required to achieve 10 mA cm?2 current density for OER in 1.0 M KOH. A two‐electrode system was constructed for overall water splitting reaction, which showed 10 and 50 mA cm?2 current density at 1.83 and 1.96 V, respectively. The prepared CuO@CQDs@CHNS catalyst demonstrated excellent robustness in HER and OER catalyzing condition along with overall water splitting reaction. Therefore, the CuO@CQDs@CHNS could be considered as promising electro‐catalyst for H2O2 sensing, HER, OER and overall water splitting.  相似文献   

20.
以天然产物野酸枣和色氨酸为原料,通过水热法一步合成量子产率为16.9%的氮掺杂荧光碳量子点。该碳量子点具有良好的水溶性和耐光性,在高盐环境中也呈现出了较高的稳定性。应用荧光光谱、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对碳量子点进行了表征。此外,Hg^2+能够有效地猝灭碳量子点的荧光,猝灭机理为电子转移的动态猝灭。基于此,可将碳量子点作为荧光探针检测Hg^2+。方法对Hg^2+的检测范围为1~50 nmol/L,检出限为0.26 nmol/L,能够应用于实际水样中Hg2+含量的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号