首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Touch‐screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR ‘app’ designed for hand‐held and portable touch‐controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non‐uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand‐alone tool or as a ‘companion’ to more advanced desktop applications such as Mnova NMR. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Based on continuous methodical advances and developments, solid-state NMR spectroscopy has become a powerful tool for the investigation of various materials, including polymers, glasses, zeolites, fullerenes, and many others. During the past decade, solid-state NMR spectroscopy also found increasing interest for the study of biomolecules. For example, membrane proteins reconstituted into lipid environments such as bilayers or vesicles, protein aggregates such as amyloid fibrils, as well as carbohydrates can now be studied by solid-state NMR spectroscopy. This review briefly introduces the principles of solid-state NMR spectroscopy and highlights novel methodical trends. Selected applications demonstrate the possibilities of solid-state NMR spectroscopy as a valuable bioanalytical tool.  相似文献   

3.
Reverse micelles currently gain increasing interest in chemical technology. They also become important in biomolecular NMR due to their ability to host biomolecules such as proteins. In the present paper, a procedure for the preparation of high-pressure NMR samples containing reverse micelles dissolved in supercritical xenon is presented. These reverse micelles are formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT). For the first time, NMR spectroscopy could be applied to reverse micelles in supercritical xenon. The AOT/H(2)O/Xe system was studied as a function of experimental parameters such as xenon pressure, water content, and salt concentration. Optimum conditions for reverse micelle formation in supercritical xenon could be determined. It is, furthermore, demonstrated that biomolecules such as amino acids and proteins can be incorporated into the reverse micelles dissolved in supercritical xenon.  相似文献   

4.
5.
Solid-state NMR spectroscopic methods in chemistry   总被引:2,自引:0,他引:2  
Over the last decades, NMR spectroscopy has grown into an indispensable tool for chemical analysis, structure determination, and the study of dynamics in organic, inorganic, and biological systems. It is commonly used for a wide range of applications from the characterization of synthetic products to the study of molecular structures of systems such as catalysts, polymers, and proteins. Although most NMR experiments are performed on liquid-state samples, solid-state NMR is rapidly emerging as a powerful method for the study of solid samples and materials. This Review outlines some of the developments of solid-state NMR spectroscopy, including techniques such as cross-polarization, magic-angle spinning, multiple-pulse sequences, homo- and heteronuclear decoupling and recoupling techniques, multiple-quantum spectroscopy, and dynamic angle spinning, as well as their applications to structure determination. Modern solid-state NMR spectroscopic techniques not only produce spectra with a resolution close to that of liquid-state spectra, but also capitalize on anisotropic interactions, which are often unavailable for liquid samples. With this background, the future of solid-state NMR spectroscopy in chemistry appears to be promising, indeed.  相似文献   

6.
The binding of two cationic europium complexes to a differentially phosphorylated insulin receptor peptide has been studied by emission spectroscopy and (31)P NMR and (1)H NMR TOCSY methods. Analysis of the europium emission and NMR spectral data was consistent with the presence of species in slow exchange on the NMR and emission timescales, in agreement with selective binding of the lanthanide ion to the phospho-tyrosine site, allowing such complexes to be considered as prototypical chemoselective paramagnetic derivatising agents.  相似文献   

7.
介绍了国产1.5T核磁共振弛豫时间分析仪的基本组成、性能指标,研发过程中攻克的技术难题。该仪器主要由磁体部分、电子部分、软件部分组成,具有体积小、信噪比高、检测无损、使用和维护简便和造价低廉等优点。同时对该系统磁体频率和磁信号的稳定性进行了相关的测试,结果表明该系统稳定可靠。该仪器的磁场强度增加到1.5T,在同等外界条件和环境下,信噪比增加约为0.5T系统的10倍,检测灵敏度大幅度提高;该仪器为食品品质鉴定、食品安全检测、医学诊断、生物标志物的大规模筛选等生化分析提供一个全新的途径。  相似文献   

8.
We show that two or more two-dimensional NMR correlation spectra can be recorded in a single shot, using a multicoil radio-frequency probe and receiver system designed for simultaneous parallel acquisition of signals from different nuclear species such as 1H, 13C, and 15N. Dubbed PANSY (parallel acquisition NMR spectroscopy), this new technique shows promise for recording several multidimensional NMR spectra of different nuclear species in a very short time.  相似文献   

9.
PFG NMR self-diffusion studies provide information on the translational mobility of fluid molecules. Since in porous media the diffusion path of fluid molecules in the pore space is affected by interaction with the pore wall, PFG NMR measurements are sensitive to structural peculiarities of the confining porous medium. The pore space properties which can be investigated depend on length scales set by the PFG NMR experiment in respect to the typical size of the structural feature studied. Based upon these length scales, an interpretation pattern for PFG NMR self-diffusion studies in porous media is given. PFG NMR self-diffusion studies in macro- and microporous systems such as sedimentary rocks and zeolite crystallites, respectively, are reviewed.  相似文献   

10.
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin–macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.  相似文献   

11.
In this study, 95Mo quadrupole couplings in various molydbates were measured easily and accurately with magic angle spinning (MAS) NMR under a directing field of 19.6 T. The resonance frequency of 54 MHz was sufficiently high to remove acoustic ringing artifacts, and the spectra could be analyzed in the usual terms of chemical shift and quadrupolar line shapes. For monomolybdates and molybdite, the quadrupole coupling dominated the NMR response, and the quadrupole parameters could be measured with better accuracy than in previous lower field studies. Moreover, despite the low symmetry of the molybdenum coordination, the usefulness of such measurements to probe molybdenum environments was established by ab initio density functional theory (DFT) calculations of the electric field gradient from known structures. The experimental NMR data correlated perfectly with the refined structures. In isopolymolybdates, the resonances were shapeless and DFT calculations were impossible because of the large and low symmetry unit cells. Nevertheless, empirical but clear NMR signatures were obtained from the spinning sidebands analysis or the MQMAS spectra. This was possible for the first time thanks to the improved baseline and sensitivity at high fields. With the generalization of NMR spectrometers operating above 17 T, it was predicted that 95Mo MAS NMR could evolve as a routine characterization tool for ill-defined structures such as supported molybdates in catalysis.  相似文献   

12.
Nuclear magnetic resonance (NMR) provides structural and dynamic information reflecting an average, often non-linear, of multiple solution-state conformations. Therefore, a single optimized structure derived from NMR refinement may be misleading if the NMR data actually result from averaging of distinct conformers. It is hypothesized that a conformational ensemble generated by a valid molecular dynamics (MD) simulation should be able to improve agreement with the NMR data set compared with the single optimized starting structure. Using a model system consisting of two sequence-related self-complementary ribonucleotide octamers for which NMR data was available, 0.3 ns particle mesh Ewald MD simulations were performed in the AMBER force field in the presence of explicit water and counterions. Agreement of the averaged properties of the molecular dynamics ensembles with NMR data such as homonuclear proton nuclear Overhauser effect (NOE)-based distance constraints, homonuclear proton and heteronuclear 1H–31P coupling constant (J) data, and qualitative NMR information on hydrogen bond occupancy, was systematically assessed. Despite the short length of the simulation, the ensemble generated from it agreed with the NMR experimental constraints more completely than the single optimized NMR structure. This suggests that short unrestrained MD simulations may be of utility in interpreting NMR results. As expected, a 0.5 ns simulation utilizing a distance dependent dielectric did not improve agreement with the NMR data, consistent with its inferior exploration of conformational space as assessed by 2-D RMSD plots. Thus, ability to rapidly improve agreement with NMR constraints may be a sensitive diagnostic of the MD methods themselves.  相似文献   

13.
Summary: It is important to identify the types of unsaturation and to quantify the amount of unsaturation in polyolefins for understanding chain termination mechanisms of polymerization with different catalysts. Unsaturation is also closely related to processibility, weatherability of polyolefin products and the level of antioxidants to be added for stabilizing purposes. However, it can be very challenging to accurately measure samples with a low level of the unsaturation within a reasonable amount of NMR acquisition time, along with some challenging technical issues, such as dynamic range with 1H NMR. This paper reports a new method to accurately quantify unsaturation by using multi peak presaturation 1H NMR with a high temperature NMR cryoprobe. The limit of quantification can be less than 1 unsaturation/1,000,000 carbons with about 30 min NMR acquisition. This paper also introduces a new technique, temperature gradient NMR (TGNMR) with or without substrates, to characterize unsaturation distribution directly in NMR tube upon temperature change.  相似文献   

14.
We report a method for the screening of interactions between proteins and selenium‐labeled carbohydrate ligands. SEAL by NMR is demonstrated with selenoglycosides binding to lectins where the selenium nucleus serves as an NMR‐active handle and reports on binding through 77Se NMR spectroscopy. In terms of overall sensitivity, this nucleus is comparable to 13C NMR, while the NMR spectral width is ten times larger, yielding little overlap in 77Se NMR spectroscopy, even for similar compounds. The studied ligands are singly selenated bioisosteres of methyl glycosides for which straightforward preparation methods are at hand and libraries can readily be generated. The strength of the approach lies in its simplicity, sensitivity to binding events, the tolerance to additives and the possibility of having several ligands in the assay. This study extends the increasing potential of selenium in structure biology and medicinal chemistry. We anticipate that SEAL by NMR will be a beneficial tool for the development of selenium‐based bioactive compounds, such as glycomimetic drug candidates.  相似文献   

15.
Several applications of solid-state nuclear magnetic resonance (NMR) spectroscopy to studying polyolefin mobility at temperatures ranging from room temperature to above the polymer melt are described. 13C NMR can be used with magic-angle spinning and high-power proton decoupling to determine the fraction of mobile polymer in polypropene and to characterize the nature of the polymer chain motions as a function of sample temperature. Similar techniques can be used to characterize the local motions of complex copolymer systems such as heterophasic ethylene-propene copolymers. The practicality of low-speed magic angle spinning to observe quantitative high-resolution NMR spectra of neat, molten polymer samples is also described.  相似文献   

16.
Post-translational protein modifications (PTMs) such as phosphorylation and acetylation regulate a large number of eukaryotic signaling processes. In most instances, it is the combination of different PTMs that "encode" the biological outcome of these covalent amendments in a highly dynamic and cell-state-specific manner. Most research tools fail to detect different PTMs in a single experiment and are unable to directly observe dynamic PTM states in complex environments such as cell extracts or intact cells. Here we describe in situ observations of phosphorylation and acetylation reactions by high-resolution liquid-state NMR spectroscopy. We delineate the NMR characteristics of progressive lysine acetylation and provide in vitro examples of joint phosphorylation and acetylation events and how they can be deciphered on a residue-specific basis and in a time-resolved and quantitative manner. Finally, we extend our NMR investigations to cellular phosphorylation and acetylation events in human cell extracts and demonstrate the unique ability of NMR spectroscopy to simultaneously report the establishment of these PTMs by endogenous cellular enzymes.  相似文献   

17.
High-resolution solution NMR experiments are extremely useful to characterize the location and the dynamics of hydrating water molecules at atomic resolution. However, these methods are severely limited by undesired incoherent transfer pathways such as those arising from exchange-relayed intra-molecular cross-relaxation. Here, we review several complementary exchange network editing methods that can be used in conjunction with other types of NMR hydration experiments such as magnetic relaxation dispersion and 1JNC′ measurements to circumvent these limitations. We also review several recent contributions illustrating how the original solution hydration NMR pulse sequence architecture has inspired new approaches to map other types of non-covalent interactions going well beyond the initial scope of hydration. Specifically, we will show how hydration NMR methods have evolved and have been adapted to binding site mapping, ligand screening, protein-peptide and peptide-lipid interaction profiling.  相似文献   

18.
After more than a century of research on resorcin[4]arenes (1) it is clear that such systems form spontaneously [1(6)(H(2)O)(8)]-type hexameric capsules in wet, non-polar, organic solvents. However, the interactions of these hexameric capsules with alcohols are far from being solved. Here we provide the results of an extensive study on the interaction of different alcohols with the hexameric capsules of resorcin[4]arene 1a by focusing on the exchange of magnetization manifested in diffusion NMR measurements of such capsular systems. We found that some alcohols such as 2-octyl-1-dodecanol and 1-octadecanol do not interact with the hexamers of 1a, whereas other alcohols such as 3-ethyl-3-pentanol, 2-ethyl-1-butanol and more act as simple guests and are simply encapsulated in the hexamers. Others alcohols such as 3-pentanol, 2-methyl-1-butanol and others, are part of the hexameric structure where they can exchange magnetization with alcohols in the bulk. The bulkier alcohols, due to an increase of the chain length or in branching, have a higher tendency to be encapsulated rather than being part of the hexameric capsule superstructure. This study demonstrate the unique information that diffusion NMR spectroscopy can provide on supramolecular systems in solution and on the precaution that should be exercised when analyzing diffusion NMR data of such dynamic supramolecular capsules.  相似文献   

19.
Nuclear magnetic resonance (NMR) spectroscopy has been used to study the morphology and dynamics in semicrystalline polymers. Dynamics may be observed through NMR relaxation rates that are sensitive to motions in the 1–108 Hz range, or through modulation of anisotropic magnetic interactions, such as the chemical shift and dipole-dipole interactions. Morphological structure may be inferred through NMR measurements of polymer dynamics or investigated directly through studies of the magnetic interactions. Here, we discuss the study of morphological structure in semicrystalline polymers using NMR, and review results on poly(ethylene terephthalate) that address the question of the number of phases in this semicrystalline polymer.This work was funded by the Office of Naval Research.  相似文献   

20.
This review article describes classical and modern solid-state NMR methods that allow to gain insight into catalyst systems where one or two metal complexes are bound to oxide supports via bifunctional phosphine linkers, such as (EtO)3Si(CH2)3PPh2. Many aspects of the immobilized molecular catalysts can be elucidated with the corresponding NMR technique. The bulk of the support can be studied, as well as the interface of the support with the ethoxysilane. With respect to the linkers, their structural integrity and mobility are as easy to investigate by classical CP/MAS and high-resolution magic angle spinning (HRMAS) NMR techniques, as their adsorption behavior. Even electrostatic bonding to the support via phosphonium groups can be proven by solid-state NMR. For the immobilized catalysts, leaching, and even “horizontal” translational mobility effects, as probed by HRMAS NMR under “realistic conditions” in the presence of solvents, are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号