首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high‐spin cobalt(II) complexes, namely [CoII(dmf)6](BPh4)2 ( 1 ) and [CoII2(sym‐hmp)2](BPh4)2 ( 2 ), in which dmf=N,N‐dimethylformamide; sym‐hmp=2,6‐bis[(2‐hydroxyethyl)methylaminomethyl]‐4‐methylphenolate, and BPh4?=tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual CoII site. In compound 1 , this approach reveals the correlation between the single‐ion easy magnetization direction and a trigonal elongation axis of the CoII coordination octahedron. In exchange‐coupled dimer 2 , the determination of the individual CoII magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both CoII sites deviate from the single‐ion behavior because of antiferromagnetic exchange coupling.  相似文献   

2.
A series of d‐block metal complexes of the recently reported coordinating neutral radical ligand 1‐phenyl‐3‐(pyrid‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 1 ) was synthesized. The investigated systems contain the benzotriazinyl radical 1 coordinated to a divalent metal cation, MnII, FeII, CoII, or NiII, with 1,1,1,5,5,5‐hexafluoroacetylacetonato (hfac) as the auxiliary ligand of choice. The synthesized complexes were fully characterized by single‐crystal X‐ray diffraction, magnetic susceptibility measurements, and electronic structure calculations. The complexes [Mn( 1 )(hfac)2] and [Fe( 1 )(hfac)2] displayed antiferromagnetic coupling between the unpaired electrons of the ligand and the metal cation, whereas the interaction was found to be ferromagnetic in the analogous NiII complex [Ni( 1 )(hfac)2]. The magnetic properties of the complex [Co( 1 )(hfac)2] were difficult to interpret owing to significant spin–orbit coupling inherent to octahedral high‐spin CoII metal ion. As a whole, the reported data clearly demonstrated the favorable coordinating properties of the radical 1 , which, together with its stability and structural tunability, make it an excellent new building block for establishing more complex metal–radical architectures with interesting magnetic properties.  相似文献   

3.
Polynuclear complexes are an important class of inorganic functional materials and are of interest particularly for their applications in molecular magnets. Multidentate chelating ligands play an important role in the design and syntheses of polynuclear metal clusters. A novel linear tetranuclear CoII cluster, namely bis{μ3‐(E)‐2‐[(2‐oxidobenzylidene)amino]phenolato}bis{μ2‐(E)‐2‐[(2‐oxidobenzylidene)amino]phenolato}bis(1,10‐phenanthroline)tetracobalt(II), [Co4(C14H11NO2)4(C12H8N2)2], was prepared under solvothermal conditions through a mixed‐ligand synthetic strategy. The structure was determined by X‐ray single‐crystal diffraction and bulk purity was confirmed by powder X‐ray diffraction. The complex molecule has a centrosymmetric tetranuclear chain‐like structure and the four CoII ions are located in two different coordination environments. The CoII ions at the ends of the chain are in a slightly distorted octahedral geometry, while the two inner CoII ions are in five‐coordinate distorted trigonal bipyramidal environments. A magnetic study reveals ferromagnetic CoII…CoII exchange interactions for the complex.  相似文献   

4.
The new diimine fluorescent ligand ACRI‐1 based on a central acridine yellow core is reported along with its coordination complex [Co2( ACRI‐1 )2] ( 1 ), a fluorescent weak ferromagnet. Due to the strong fluorescence of the acridine yellow fluorophore, it is not completely quenched when the ligand is coordinated to CoII. The magnetic properties of bulk complex 1 and its stability in solution have been studied. Complex 1 has been deposited on highly ordered pyrolitic graphite (HOGP) from solution. The thin films prepared have been characterized by AFM, time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS), grazing incidence X‐ray diffraction (GIXRD), X‐ray absorption spectroscopy (XAS), X‐ray magnetic circular dichroism (XMCD) and theoretical calculations. The data show that the complex is robust and remains intact on the surface of graphite.  相似文献   

5.
We have determined by polarized neutron diffraction (PND) the low‐temperature molecular magnetic susceptibility tensor of the anisotropic low‐spin complex PPh4[FeIII(Tp)(CN)3]?H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo‐axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the FeIII ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear‐cut way to establish magneto‐structural correlations in paramagnetic molecular complexes.  相似文献   

6.
Herein, a mechanism of stepwise metal‐center exchange for a specific metal–organic framework, namely, [Zn4(dcpp)2(DMF)3(H2O)2]n (H4dcpp=4,5‐bis(4′‐carboxylphenyl)phthalic acid), is disclosed for the first time. The coordination stabilities between the central metal atoms and the ligands as well as the coordination geometry are considered to be dominant factors in this stepwise exchange mechanism. A new magnetic analytical method and a theoretical model confirmed that the exchange mechanism is reasonable. When the metathesis reaction occurs between CuII ions and framework ZnII ions, the magnetic exchange interaction of each pair of CuII centers gradually strengthens with increasing amount of framework CuII ions. By analyzing the changes of coupling constants in the Cu‐exchanged products, it was deduced that Zn4 and Zn3 are initially replaced, and then Zn1 and Zn2 are replaced later. The theoretical calculation further verified that Zn4 is replaced first, Zn3 next, then Zn1 and Zn2 last, and the coordination stability dominates the Cu/Zn exchange process. For the Ni/Zn and Co/Zn exchange processes, besides the coordination stability, the preferred coordination geometry was also considered in the stepwise‐exchange behavior. As NiII and CoII ions especially favor octahedral coordination geometry in oxygen‐ligand fields, NiII ions and CoII ions could only selectively exchange with the octahedral ZnII ions, as was also confirmed by the experimental results. The stepwise metal‐exchange process occurs in a single crystal‐to‐single crystal fashion.  相似文献   

7.
The ligand‐centered radical complex [(CoTPMA)2‐μ‐bmtz.?](O3SCF3)3 ? CH3CN (bmtz=3,6‐bis(2′‐pyrimidyl)‐1,2,4,5‐tetrazine, TPMA=tris‐(2‐pyridylmethyl)amine) has been synthesized from the neutral bmtz precursor. Single‐crystal X‐ray diffraction studies have confirmed the presence of the ligand‐centered radical. The CoII complex exhibits slow paramagnetic relaxation in an applied DC field with a barrier to spin reversal of 39 K. This behavior is a result of strong antiferromagnetic metal–radical coupling combined with positive axial and strong rhombic anisotropic contributions from the CoII ions.  相似文献   

8.
A tetranuclear CuICuII mixed oxidation state complex, [CuII 2(μ-I)2CuI 2(μ-I)2(phenP)2I2] (phenPE: 2-(1H-pyrazol-1-yl)-1,10-phenanthroline), has been prepared and its crystal structure is determined by X-ray crystallography. In the complex, CuII is a distorted square pyramid and CuI is a distorted trigonal planar coordination environment; CuII and CuI are bridged by iodide. It is rare to form a CuII-iodide bond and for CuII and CuI to be bridged by iodide. In the crystal, there is a slipped ππ stacking between adjacent CuII complexes, which resulted in the formation of the 1-D chain along the c axis. The fitting for the variable-temperature magnetic susceptibility data gave magnetic coupling constant 2J?=??1.16?cm?1 and it may be ascribed to the intermolecular ππ magnetic coupling pathway.  相似文献   

9.
Three coordination compounds with dimensions from 0D to 2D, namely, [Co(bppdca)2(HL1)2] ( 1 ) [Co(bppdca)(L2)(H2O)] · 2H2O ( 2 ) and [Co(bppdca)(L3)] · 3H2O ( 3 ) [bppdca = N,N′‐bis(pyridine‐3‐yl)pyridine‐2,6‐dicarboxamide, H2L1 = 2,5‐pyridinedicarboxylic acid, H2L2 = 4,4′‐oxybisbenzoic acid, H2L3 = 2‐carboxymethylsulfanyl nicotinic acid] were hydrothermally synthesized and structurally characterized. Single crystal X‐ray diffraction analysis reveals that complex 1 is a discrete 0D complex, in which the bppdca ligand and the H2L1 act as the terminal groups to coordinate with the CoII ions. In coordination polymer 2 , two bppdca ligands coordinate in anti configuration with two CoII ions to generate a 28‐membered Co2(bppdca)2 loop, which is further extended into 1D ladder‐like double chain by pairs of L2 ligands. In 3 , the CoII ions are linked by bppdca ligands to generate 1D wave‐like chain, which is further connected by the L3 to form a 2D network. Finally, the coordination compounds 1 – 3 are extended into 3D supramolecular frameworks through the hydrogen bonding interactions. The CoII ions and the bppdca ligands in the title coordination compounds exhibit different coordination characters and conformations. The effect of organic dicarboxylates with different rigidity and length on the structures of CoII coordination compounds was investigated. In addition, the fluorescence and electrochemical behaviors of coordination compounds 1 – 3 were reported.  相似文献   

10.
The title coordination polymer, [Cd3Co2(CN)12(C2H8N2)4]n, has an infinite two‐dimensional network structure. The asymmetric unit is composed of two crystallographically independent CdII atoms, one of which is located on a twofold rotation axis. There are two independent ethylenediamine (en) ligands, one of which bis‐chelates to the Cd atom that sits in a general position, while the other bridges this Cd atom to that sitting on the twofold axis. The Cd atom located on the twofold rotation axis is linked to four equivalent CoIII atoms via cyanide bridges, while the Cd atom that sits in a general position is connected to three equivalent CoIII atoms via cyanide bridges. In this way, a series of trinuclear, tetranuclear and pentanuclear macrocycles are linked to form a two‐dimensional network structure lying parallel to the bc plane. In the crystal structure, these two‐dimensional networks are linked via N—H...N hydrogen bonds involving an en NH2 H atom and a cyanide N atom, leading to the formation of a three‐dimensional structure. This coordination polymer is only the second example involving a cyanometallate where the en ligand is present in both chelating and bridging coordination modes.  相似文献   

11.
A method was developed for the synthesis of mixed-metal heterospin compounds with the direct coordination of the nitroxide fragment based on the replacement of acetonitrile molecules in the heterotrinuclear complex [Co2Gd(NO3)Piv6(CH3CN)2] with nitroxide molecules. The molecular and crystal structure of the heterospin mixed-ligand heterotrinuclear CoII, GdIII, CoII complex [Co2Gd(NO3)Piv6(NIT-Me)2], where NIT-Me is stable nitronyl nitroxide, was established. The magnetic properties of this complex were investigated in the temperature range of 2–300 K. The coordination of nitroxide groups to CoII ions is responsible for strong exchange interactions between the unpaired electrons in the exchange clusters {>-·O-CoII}, resulting in the virtually complete spin coupling between each coordinated >N-·O group and one of the unpaired electrons of each CoII ion at temperatures below 200 K. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1742–1745, September, 2007.  相似文献   

12.
Herein, we report a CN‐bridged alternating FeII?NiII 1D chain to ensure the alignment of axial anisotropy and improve the single molecule magnet (SMM) behavior in seven coordinated FeII compound. The chain was constructed from hepta coordinated Fe(II) complex as an anisotropic building unit and diamagnetic nickel tetra cyanate as a bridging ligand. The magnetic measurements show the easy‐axis anisotropy of the seven coordinated Fe(II) complex and field induced SMM behavior with spin reversal energy barrier Ueff=61(2) K (42 cm?1) and pre‐exponential relaxation time τ0=1.9×10?8 s. The detailed analysis of the relaxation dynamics discloses that the Orbach process plays an important role in slow relaxation of magnetization for this compound. Notably, this example represents a remarkable energy barrier observed in hepta coordinated Fe(II) SMMs. The ab initio calculations estimate the magnitude of axial anisotropy and show the parallel orientation of the anisotropic axis throughout the 1D polymeric chain. In addition, it is also reported that the presence of weak π accepter ligands in the distorted axial position enhance the easy‐axis anisotropy.  相似文献   

13.
A novel linear polymeric pentadentate (O2N2S‐sites) ligand (H3L) bearing both soft and hard donors was prepared by the reaction of a bifunctional carbonyl compound, 4,6‐diacetylresorcinol, with a bifunctional hydrazide compound, thiocarbohydrazide. Mono‐ and binuclear CuII and NiII complexes/each monomeric unit of the polymeric ligand were obtained depending on the pH of the reaction medium and the metal ion. Adducts with 1,10‐phenanthroline (Phen) and 2,2′‐bipyridyl (Bpy) were obtained. Anomalous dimeric CoII/CoIII complexes of the polymeric ligand were obtained in which two molecules of the linear polymeric ligand trapped two cobalt ions (CoII and CoIII) in each monomeric unit. These structures are very interesting in that they contain CoII/CoIII, side by side, as high‐spin square planar coordinated CoII ions and low‐spin (diamagnetic) octahedral coordinated CoIII ions. The suggested structures of the complexes have been elucidated on the basis of elemental and thermal analyses, conductance, and magnetic susceptibility measurements as well as spectral studies (electronic, IR, and ESR spectra). © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:100–107, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20239  相似文献   

14.
A new cobalt(II) coordination polymer containing 4,4′‐bipyridine and azide as bridging ligand, [CoII(4,4′‐bpy)(N3)2]n ( 1 ) was synthesized under mild hydrothermal conditions and was characterized by single‐crystal X‐ray diffraction studies and magnetic susceptibility measurements. It exhibits an acentric structure, in which cobalt(II) ions are linked through end‐to‐end (EE) azido groups. The 4,4′‐bpy ligands are coordinated on the axial positions of the octahedral environment reinforcing the intermetallic connections and resulting in a network. Circular dichroism spectra of the compound exhibit a maximum negative Cotton effect at 260 nm, which indicates the chiral nature of 1 . Variable temperature magnetic susceptibility measurements in the temperature range 2–300 K reveal the existence of antiferromagnetic couplings in the framework.  相似文献   

15.
From the viewpoints of large capacity, long‐term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metal‐substituted ?‐Fe2O3, ?‐GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, nanoparticles with an average size of 18 nm. Ga, Ti, and Co cations tune the magnetic properties of ?‐Fe2O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7 kOe by introduction of single‐ion anisotropy on CoII (S=3/2) along the c‐axis. The saturation magnetization was increased by 44 % with GaIII (S=0) and TiIV (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signal‐to‐noise ratio compared to the currently used magnetic tape.  相似文献   

16.
The reaction of Hppko (Hppko = phenyl 2‐pyridyl ketone oxime) and CoCl2 · 6H2O in the CH3OH solvent with the presence of triethylamine (NEt3) at room temperature and the exposure to air resulted in the formation of a new pentanuclear, mixed‐valence cobalt complex with the molecular formula [{CoII(CH3O)3}2{CoIII33‐O)(ppko)3}Cl2]. X‐ray single crystal analysis displays a trigonal bipyramid configuration with the terminal two CoII ions wrapping an triangle [CoIII3O]7+ core. The intermolecular C–H ··· O and C–H ··· Cl interactions form a 2D network framework. The analysis of magnetic susceptibility revealed the dominant antiferromagnetic interactions and strong orbital contribution of CoII ions.  相似文献   

17.
A single crystal to single crystal transmetallation process takes place in the three‐dimensional (3D) metal–organic framework (MOF) of formula MgII2{MgII4[CuII2(Me3mpba)2]3}?45 H2O ( 1 ; Me3mpba4?=N,N′‐2,4,6‐trimethyl‐1,3‐phenylenebis(oxamate)). After complete replacement of the MgII ions within the coordination network and those hosted in the channels by either CoII or NiII ions, 1 is transmetallated to yield two novel MOFs of formulae Co2II{CoII4[CuII2(Me3mpba)2]3}?56 H2O ( 2 ) and Ni2II{NiII4[CuII2(Me3mpba)2]3}? 54 H2O ( 3 ). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and magnetic properties.  相似文献   

18.
We present herein anionic borate‐based bi‐mesoionic carbene compounds of the 1,2,3‐triazol‐4‐ylidene type that undergo C?N isomerization reactions. The isomerized compounds are excellent ligands for CoII centers. Strong agostic interactions with the “C?H”‐groups of the cyclohexyl substituents result in an unusual low‐spin square planar CoII complex, which is unreactive towards external substrates. Such agostic interactions are absent in the complex with phenyl substituents on the borate backbone. This complex displays a high‐spin tetrahedral CoII center, which is reactive towards external substrates including dioxygen. To the best of our knowledge, this is also the first investigation of agostic interactions through single‐crystal EPR spectroscopy. We conclusively show here that the structure and properties of these CoII complexes can be strongly influenced through interactions in the secondary coordination sphere. Additionally, we unravel a unique ligand rearrangement for these classes of anionic mesoionic carbene‐based ligands.  相似文献   

19.
The title complexes, [M(C5O5)(C12H8N2)2], with M = CoII, NiII and CuII, all lie across twofold rotation axes, around which two 1,10‐phenanthroline ligands are arranged in a chiral propeller manner. The CoII and NiII complexes are isostructural, with octa­hedral coordination geometry, while the local geometry of the CuII complex is severely distorted from octa­hedral.  相似文献   

20.
The crystal structures of two new isomorphous transition metal squarato complexes [MII(C4O4)(dmso)2(OH2)2] [MII = CoII (3d7), MnII (3d5); dmso = dimethylsulfoxide] and their magnetic properties are reported. The compounds feature two symmetrically independent chains, in which 1,3‐bridging squarato ligands connect cations in distorted octahedral surroundings of pseudo‐symmetry D4h. From an equimolar solution of CoCl2 · 6H2O and MnCl2 · 2H2O a mixed‐metal coordination polymer crystallizes; it represents a solid solution and adopts the same structure as the corresponding monometallic compounds. The results of the diffraction experiment unambiguously proof the presence of both CoII and MnII cations in either independent site albeit no precise ratio between the metal cations involved may be deduced from these findings. The difference in the magnetic properties between CoII and MnII cations in the given ligand field has allowed us to establish their ratio in the solid solution more reliably than by X‐ray diffraction: Accounting for ligand field potential and spin‐orbit coupling of CoII and regarding MnII as a pure spin system, the calculations yielded a fraction of 73 % CoII in the mixed‐metal polymer. With respect to superexchange effects only weak antiferromagnetic interactions have been detected for the three coordination polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号