首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and the luminescence features of three gold(I)-N-heterocyclic carbene (NHC) complexes are presented to study how the n-alkyl group can influence the luminescence properties in the crystalline state. The mononuclear gold(I)-NHC complexes, [( L1 )Au(Cl)] ( 1 ), [( L2 )Au(Cl)] ( 2 ), and [( L3 )Au(Cl)] ( 3 ) were isolated from the reactions between [(tht)AuCl] and corresponding NHC ligand precursors, [N-(9-acridinyl)-N’-(n-butyl)-imidazolium chloride, ( L1 .HCl)], [N-(9-acridinyl)-N’-(n-pentyl)-imidazolium chloride, ( L2 .HCl)] and [N-(9-acridinyl)-N’-(n-hexyl)-imidazolium chloride, ( L3 .HCl)]. Their single-crystal X-ray analysis reveals the influence of the n-alkyl groups on solid-state packing. A comparison of the luminescence features of 1 – 3 with n-alkyl substituents is explored. The molecules 1 – 3 depicted blue emission in the solution state, while the yellow emission (for 1 ), greenish-yellow emission (for 2 ), and blue emission (for 3 ) in the crystalline phase. This paradigm emission shift arises from n-butyl to n-pentyl and n-hexyl in the crystalline state due to the carbon-carbon rotation of the n-alkyl group, which tends to promote unusual solid packing. Hence n-alkyl group adds a novel emission property in the crystalline state. Density Functional Theory and Time-Dependent Density Functional Theory calculations were carried out for monomeric complex, N-(9-acridinyl)-N’-(n-heptyl)imidazole-2-ylidene gold(I) chloride and dimeric complex, N-(9-acridinyl)-N’-(n-heptyl)imidazole-2-ylidene gold(I) chloride to understand the structural and electronic properties.  相似文献   

2.
Herein, we report the oxidative addition of aryldiazonium salts to ligand‐supported gold(I) complexes under visible light photoredox conditions. This method provides experimental evidence for the involvement of such a process in dual gold/photoredox‐catalyzed reactions and delivers well‐defined (C,N)‐cyclometalated gold(III) species. The remarkably mild reaction conditions and the ability to widely vary the ancillary ligand make this method a potentially powerful synthetic tool to access diverse gold(III) complexes for systematic studies into their properties and reactivity. Initial studies show that these species can undergo chloride abstraction to afford Lewis acidic dicationic gold(III) species.  相似文献   

3.
The reaction of allenoates with cationic gold(I)—generated in situ from a phosphine gold chloride and a silver salt—formed unusual, room temperature stable vinyl gold(I) lactones under very mild conditions. The scope and limitations for the synthesis of this novel organogold complex was investigated. DFT calculations on the highest occupied molecular orbitals (HOMOs) of allenoates and the natural bond orbital (NBO) charge densities provided an explanation for the limitations. A plausible mechanism for its formation was proposed based on in situ 1H and 31P NMR spectroscopic analyses. Controlled experiments for the cleavage of the gold–carbon bond by electrophiles indicated that this vinyl gold(I) complex is the likely intermediate in the gold‐catalyzed reaction of carbon–carbon multiple bonds.  相似文献   

4.
Russian Journal of Coordination Chemistry - New bi- and trinuclear gold(I) complexes are synthesized by the reactions of gold(I) chloride or tetrahydrothiophenegold(I) chloride with...  相似文献   

5.
A number of mixed ligand complexes of gold(I) with various selenones and Ph3P, [Ph3PAuSe=C<]Cl have been prepared and characterized by elemental analyses, i.r. and n.m.r. methods. A decrease in the i.r. frequency of the C=Se mode of selenones upon complexation is indicative of gold(I) binding viaa selenone group. An upfield shift in the 13 C-n.m.r. for the C=Se resonance of selenones and downfield shifts in 31P-n.m.r. for the Ph3P moiety are consistent with the selenium coordination to gold(I). Available data in the literature suggest that P–Au–Se type complexes are usually linear.  相似文献   

6.
The study of perfluoroalkyl metal complexes is key to understand and improve metal-promoted perfluoroalkylation reactions. Herein, we report the synthesis of the first gold complexes with primary or secondary perfluoroalkyl ligands by photoinitiated reactions between AuI organometallic complexes and iodoperfluoroalkanes. Complexes of the types LAuRF (L=PPh3 or N,N-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; RF=n-C4F9, n-C6F13, i-C3F7, c-C6F11) and [Au(RF)(Ar)I(PPh3)] (Ar=2,4,6-trimethylphenyl) have been isolated and characterized. Alkynes RFC≡CR were formed by reaction of Ph3PAuC≡CR (R=Ph, nHex) with IRF (RF=n-C4F9, i-C3F7). According to the evidences obtained, this transformation undergoes through a photoinitiated radical mechanism. AuIII complexes [Au(n-C4F9)(X)(Y)L] (X=Y=Cl, Br, I, Me; X=Me, Y=I) have been prepared or in situ generated, and their thermal or photochemical decomposition reactions have been studied.  相似文献   

7.
Mesityl gold(I) carbenes lacking heteroatom stabilization or shielding ancillary ligands have been generated and spectroscopically characterized from chloro(mesityl)methylgold(I) carbenoids bearing JohnPhos‐type ligands by chloride abstraction with GaCl3. The aryl carbenes react with PPh3 and alkenes to give stable phosphonium ylides and cyclopropanes, respectively. Oxidation with pyridine N‐oxide and intermolecular C?H insertion to cyclohexane have also been observed. In the absence of nucleophiles, a bimolecular reaction, similar to that observed for other metal carbenes, leads to a symmetrical alkene.  相似文献   

8.
Mesityl gold(I) carbenes lacking heteroatom stabilization or shielding ancillary ligands have been generated and spectroscopically characterized from chloro(mesityl)methylgold(I) carbenoids bearing JohnPhos‐type ligands by chloride abstraction with GaCl3. The aryl carbenes react with PPh3 and alkenes to give stable phosphonium ylides and cyclopropanes, respectively. Oxidation with pyridine N‐oxide and intermolecular C?H insertion to cyclohexane have also been observed. In the absence of nucleophiles, a bimolecular reaction, similar to that observed for other metal carbenes, leads to a symmetrical alkene.  相似文献   

9.
The crystal structures of two salts of bis­(thio­urea)­gold(I) complexes, namely bis­(thio­urea‐κS)­gold(I) chloride, [Au(CH4N2S)2]Cl, (I), and bis­[bis­(thio­urea‐κS)­gold(I)] sulfate, [Au(CH4N2S)2]2SO4, (II), have been determined. The chloride salt, (I), is isomorphous with the corresponding bromide salt, although there are differences in the bonding. The AuI ion is located on an inversion centre and coordinated by two symmetry‐related thio­urea ligands through the lone pairs on their S atoms [Au—S 2.278 (2) Å and Au—S—C 105.3 (2)°]. The sulfate salt, (II), crystallizes with four independent [Au(CH4N2S)2]+ cations per asymmetric unit, all with nearly linear S—Au—S bonding. The cations in (II) have similar conformations to that found for (I). The Au—S distances range from 2.276 (3) to 2.287 (3) Å and the Au—S—C angles from 173.5 (1) to 177.7 (1)°. These data are relevant in interpreting different electrochemical processes where gold–thio­urea species are formed.  相似文献   

10.
Di‐tert‐butylated‐bis(phosphino)ferrocene ligands bearing phosphino substituents R (R=phenyl, cyclohexyl, iso‐propyl, mesityl, or furyl) allow tuning the selective formation of Au(I) halide complexes. Thus, dinuclear linear two‐coordinate, but also rare mononuclear trigonal three‐coordinate and tetrahedral four‐coordinate complexes were formed upon tuning of the conditions. Both Au(I) chloride and rarer Au(I) iodide complexes were synthesized, and their X‐ray diffraction analysis are reported. The significance of the control of structure and nuclearity in Au(I) complexes is further illustrated herein by its strong effect on the efficiency and selectivity of gold‐catalysed cycloisomerization. Cationic linear digold(I) bis(dicyclohexylphosphino) ferrocenes outperform other catalysts in the demanding regioselective cycloisomerization of enyne sulphonamides into cyclohexadienes. Conversely, tetrahedral and trigonal cationic monogold(I) complexes were found incompetent for enyne cycloaddition. We used the two‐coordinate linear electron‐rich Au(I) complex 2 b (R=Cy) to extend the scope of selective intramolecular cycloaddition of different 1,6‐enyne sulfonylamines with high activity and excellent selectivity to the endo cyclohexadiene products.  相似文献   

11.
The conversion of simple, easily available urea‐substituted 3‐phenylpropargyl alcohols catalyzed by a simple IPr–gold(I) catalyst in a gold(I)‐catalyzed cascade reaction composing of a gold‐catalyzed nucleophilic addition and a subsequent gold‐catalyzed substitution reaction delivers 1H‐imidazo[1, 5?a]indol‐3(2 H)‐ones. Other gold(I) catalysts or silver catalysts gave lower yields and often gave other side products. Gold(III) and copper(II) catalysts decomposed the starting material. Twelve examples, including donor and acceptor substituents on the distal nitrogen of the urea substructure, are provided. An X‐ray crystal structure analysis confirmed the structural assignment. The mechanistic investigation including isolation and further conversion of intermediates and reactions with enantiopure starting materials indicated that after the nucleophilic‐addition step, the substrate undergoes an SN1‐type benzylic substitution reaction at the indolyl alcohol intermediate or an intramolecular hydroamination reaction of the 2‐vinylindole intermediate.  相似文献   

12.
Three different arsonium salts were prepared by a solvent-free method from Ph3As and the respective 2-bromoacetophenones. These salts were deprotonated by NaOH to form keto-stabilized arsenic ylides. The ylids react with [AuCl(tht)] affording gold(I) complexes containing the C-bound ylide. The compounds were characterized by NMR spectroscopy, IR spectroscopy, and X-ray diffraction.  相似文献   

13.
Corrole complexes with gold(I) and gold(III) were synthesized and their structural, photophysical, and electrochemical properties investigated. This work includes the X-ray crystallography characterization of gold(I) and gold(III) complexes, both chelated by a corrole with fully brominated β-pyrrole carbon atoms. The mononuclear and chiral gold(I) corrole appears to be the first of its kind within the porphyrinoid family, while the most unique property of the gold(III) corrole is that it displays phosphorescence at ambient temperatures.  相似文献   

14.
The gas‐phase bond‐dissociation energies of a SO2–imidazolylidene leaving group of three gold(I) benzyl imidazolium sulfone complexes are reported (E0=46.6±1.7, 49.6±1.7, and 48.9±2.1 kcal mol?1). Although these energies are similar to each other, they are reproducibly distinguishable. The energy‐resolved collision‐induced dissociation experiments of the three [L]–gold(I) (L=ligand) carbene precursor complexes were performed by using a modified tandem mass spectrometer. The measurements quantitatively describe the structural and electronic effects a p‐methoxy substituent on the benzyl fragment, and trans [NHC] and [P] gold ligands, have towards gold carbene formation. Evidence for the formation of the electrophilic gold carbene in solution was obtained through the stoichiometric and catalytic cyclopropanation of olefins under thermal conditions. The observed cyclopropane yields are dependent on the rate of gold carbene formation, which in turn is influenced by the ligand and substituent. The donation of electron density to the carbene carbon by the p‐methoxy benzyl substituent and [NHC] ligand stabilizes the gold carbene intermediate and lowers the dissociation barrier. Through the careful comparison of gas‐phase and solution chemistry, the results suggest that even gas‐phase leaving‐group bond‐dissociation energy differences of 2–3 kcal mol?1 enormously affect the rate of gold carbene formation in solution, especially when there are competing reactions. The thermal decay of the gold carbene precursor complex was observed to follow first‐order kinetics, whereas cyclopropanation was found to follow pseudo‐first‐order kinetics. Density‐functional‐theory calculations at the M06‐L and BP86‐D3 levels of theory were used to confirm the observed gas‐phase reactivity and model the measured bond‐dissociation energies.  相似文献   

15.
The binuclear tungsten(0) biscarbene complexes3 and4 react with tetrachloroauric acid (stöchiometric ratio 1 : 2) to give the corresponding gold(I) complexes5 and6 involving the transfer of biscarbene ligands from two tungsten to two gold fragments. Preparation and spectroscopic data are described.
Herrn Prof. Dr.K. Schlögl zum 60. Geburtstag gewidmet.  相似文献   

16.
Nine- and ten-membered N-heterocyclic carbene (NHC) ligands have been developed and for the first time their gold(I) complexes were synthesized. The protonated NHC pro-ligands 2 a – h were prepared by the reaction of readily available N,N′-diarylformamidines with bis-electrophilic building blocks, followed by anion exchange. In situ deprotonation of the tetrafluoroborates 2 a – h with tBuOK in the presence of AuCl(SMe2) provided fast access to NHC-gold(I) complexes 3 – 10 . These new NHC-gold(I) complexes show very good catalytic activity in a cycloisomerization reaction (0.1 mol % catalyst loading, up to 100 % conversion) and their solid-state structures reveal high steric hindrance around the metal atom (%Vbur up to 53.0) which is caused by their expanded-ring architecture.  相似文献   

17.
The gold(I) complex catalyzed cycloisomerization and skeletal rearrangement of 1,n‐enynes (n=5–7) is a powerful methodology for the efficient synthesis of complex molecular architectures. In contrast to 1,6‐enynes, readily accessible homologous 1,7‐enynes are largely unexplored in such transformations. Here, the divergent skeletal rearrangement of all‐carbon 1,7‐enynes by catalysis with a cationic gold(I) complex is reported. Depending on electronic and steric factors, differently substituted 1,7‐enynes react via different carbocations formed from a common gold carbene intermediate to yield on the one hand novel exocyclic allenes and on the other hand tricyclic hexahydro‐anthracenes through a novel dehydrogenative Diels–Alder reaction.  相似文献   

18.
Gold(I)‐polyoxometalate hybrid complexes 1 – 4 ([PPh3AuMeCN]xH4?xSiW12O40, x=1–4) were synthesized and characterized. The structure of the primary gold(I)–polyoxometalate 1 (x=1) was fully ascertained by XRD, FTIR, 31P and 29Si magic‐angle spinning (MAS) NMR, mass spectroscopy, and SEM–energy dispersive X‐ray spectroscopy (EDX) techniques. Moreover, this complex exhibited better catalytic activity and selectivity compared with standard, homogeneous, gold catalysts in the new rearrangement of propargylic gem‐diesters.  相似文献   

19.
Trifluoromethylation of AuCl3 by using the Me3SiCF3/CsF system in THF and in the presence of [PPh4]Br proceeds with partial reduction, yielding a mixture of [PPh4][AuI(CF3)2] ( 1′ ) and [PPh4][AuIII(CF3)4] ( 2′ ) that can be adequately separated. An efficient method for the high‐yield synthesis of 1′ is also described. The molecular geometries of the homoleptic anions [AuI(CF3)2]? and [AuIII(CF3)4]? in their salts 1′ and [NBu4][AuIII(CF3)4] ( 2 ) have been established by X‐ray diffraction methods. Compound 1′ oxidatively adds halogens, X2, furnishing [PPh4][AuIII(CF3)2X2] (X=Cl ( 3 ), Br ( 4 ), I ( 5 )), which are assigned a trans stereochemistry. Attempts to activate C? F bonds in the gold(III) derivative 2′ by reaction with Lewis acids under different conditions either failed or only gave complex mixtures. On the other hand, treatment of the gold(I) derivative 1′ with BF3?OEt2 under mild conditions cleanly afforded the carbonyl derivative [AuI(CF3)(CO)] ( 6 ), which can be isolated as an extremely moisture‐sensitive light yellow crystalline solid. In the solid state, each linear F3C‐Au‐CO molecule weakly interacts with three symmetry‐related neighbors yielding an extended 3D network of aurophilic interactions (Au???Au=345.9(1) pm). The high $\tilde \nu $ CO value (2194 cm?1 in the solid state and 2180 cm?1 in CH2Cl2 solution) denotes that CO is acting as a mainly σ‐donor ligand and confirms the role of the CF3 group as an electron‐withdrawing ligand in organometallic chemistry. Compound 6 can be considered as a convenient synthon of the “AuI(CF3)” fragment, as it reacts with a number of neutral ligands L, giving rise to the corresponding [AuI(CF3)(L)] compounds (L=CNtBu ( 7 ), NCMe ( 8 ), py ( 9 ), tht ( 10 )).  相似文献   

20.
A systematic investigation into the relationship between the solid‐state luminescence and the intermolecular Au???Au interactions in a series of pyrazolate‐based gold(I) trimers; tris(μ2‐pyrazolato‐N,N′)‐tri‐gold(I) ( 1 ), tris(μ2‐3,4,5‐ trimethylpyrazolato‐N,N′)‐tri‐gold(I) ( 2 ), tris(μ2‐3‐methyl‐5‐phenylpyrazolato‐N,N′)‐tri‐gold(I) ( 3 ) and tris(μ2‐3,5‐diphenylpyrazolato‐N,N′)‐tri‐gold(I) ( 4 ) has been carried out using variable temperature and high pressure X‐ray crystallography, solid‐state emission spectroscopy, Raman spectroscopy and computational techniques. Single‐crystal X‐ray studies show that there is a significant reduction in the intertrimer Au???Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au???Au contacts of between 0.04 and 0.08 Å. The solid‐state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red‐shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au???Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm?1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au???Au distance observed by diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号