首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered graphitic carbon nanosheets (GCNs) were, for the first time, synthesized by the direct condensation of multifunctional phenylacetyl building blocks (monomers) in the presence of phosphorous pentoxide. The GCNs had highly ordered structures with random hole defects and oxygenated functional groups, showing paramagnetism. The results of combined structural and magnetic analyses indicate that the hole defects and functional groups are associated with the appearance and stabilization of unpaired spins. DFT calculations further suggest that the emergence of stabilized spin moments near the edge groups necessitates the presence of functionalized carbon atoms around the hole defects. That is, both hole defects and oxygenated functional groups are essential ingredients for the generation and stabilization of spins in GCNs.  相似文献   

2.
Carbon dots were prepared by the method of hydrothermal synthesis from carbon precursors of glucose and birch bark soot in aqueous ammonia. The distribution of lateral sizes of carbon dots testifies their average size to be 10–12 nm for glucose and 20–22 nm for soot. Infrared absorption spectra indicate oxygen groups on the surfaces of obtained carbon dots. Aqueous suspensions with glucose-based carbon dots exhibit strong absorption in the visible region from 300 nm to 500 nm. Soot-based carbon dots demonstrate strong absorption in the ultraviolet region, but are transparent in the visible region. The luminescence spectra exhibit that carbon dots synthesized from glucose and soot are luminescent in the same spectral region, their wavelengths of radiation depend on the wavelengths of excitation, and the intensity of luminescence depends on the presence of oxygen groups on the surface of carbon dots. Carbon dots synthesized from glucose and soot have great prospects in terms of their application in biology and medicine.  相似文献   

3.
A high amount of heteroatom doping in carbon, although favorable for enhanced density of catalytically active sites, may lead to substantially decreased electroconductivity, which is necessary for the electrochemical oxygen reduction reaction. Herein, a relatively low amount of nitrogen was successfully doped into carbon nanotubes (CNTs) by a hydrothermal approach in one step, and the synthesized nitrogen‐doped CNT (CNT‐N) materials retained most of the original, excellent characteristics, such as the graphitic structure, tubular morphology, and high surface area, of CNTs. The resultant CNT‐N materials, although containing a relatively low amount of nitrogen doping, exhibited high electrocatalytic ORR activity, comparable to that of 20 wt % Pt/C; long durability; and, more importantly, largely inhibited methanol crossover effect.  相似文献   

4.
A single‐wall carbon nanotube functionalized by carboxylic groups (SWNT‐CA) was found to be adsorbed on an indium tin oxide (ITO) electrode by chemical interaction between carboxylic groups and the ITO surface. The adsorption experiments indicated that the narrow pH conditions (around pH 3.0) exist for its adsorption which is restricted by preparation of stable fluid dispersion (favorable at higher pH) and by the chemical interaction (favorable at lower pH). Atomic force microscopic (AFM) measurements suggest that fragmented SWNT‐CA are adsorbed, primarily lying on the surface. Electrochemical impedance analysis indicated that an electrochemical double layer capacitance of the SWNT‐CA/ITO electrode is considerably higher than that for the ITO electrode, suggesting that the interfacial area between the electrode surface and the electrolyte solution is enlarged by the SWNT‐CA layer. Pt particles were deposited as a catalyst on the bare ITO and SWNT‐CA‐coated ITO (SWNT‐CA/ITO) electrodes to give respective Pt‐modified electrodes (denoted as a Pt/ITO electrode and a Pt/SWNT‐CA/ITO electrode, respectively). The cathodic current for the Pt/SWNT‐CA/ITO electrode was 1.7 times higher than that for the Pt/ITO electrode at 0.0 V, showing that the Pt/SWNT‐CA/ITO electrode works more efficiently for O2 reduction at 0.0 V due to the SWNT‐CA layer. The enhancement by the SWNT‐CA layer is also effective for electrocatalytic proton reduction. It could be ascribable to the enlarged interfacial area between the electrode surface and the electrolyte solution.  相似文献   

5.
6.
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。  相似文献   

7.
Journal of Analytical Chemistry - Lithium iron phosphate materials as one of the most representative cathode materials for lithium-ion battery were found to possess intrinsic peroxidase-like...  相似文献   

8.
Batch pressure vessels commonly used for hydrothermal liquefaction have typical heating times in the range of 30 to 60 min. Thermodynamically, the complex set of reactions are path dependent, so that the heating rate can possibly affect yields and the composition of the resultant liquid products. It is postulated that the mode of heat transfer becomes an uncontrolled variable in kinetic studies and can seriously impact scale-up. To confirm this hypothesis and minimize these heat-transfer-related artifacts, we designed a batch pressure vessel equipped with an induction heating system, which allows the reduction of heat-up times by about two orders of magnitude to several seconds, compared to tens of minutes with standard pressure reactors. This system was used to study the direct liquefaction of corn stover and aspen wood with a pretreatment. The heating rate was found to have no significant effect on the composition of the liquid products. However, the liquid yields are dependent on the heating rate. Varying the cooling rate does not show obvious effects. The results confirm that the heating rate, as governed by the mode of heat transfer, is an important factor that needs to be considered during scale-up.  相似文献   

9.
将二氧化碳转化为高附加值的燃料和化学品是缓解当前能源危机和控制温室气体排放的有效策略之一,但此法受限于缺乏高活性与高选择性的电催化剂。因此,我们通过热解含镍金属有机框架结构(MOF)和二氰二胺制得负载高含量镍单原子(7.77% (w))的超薄氮掺杂二维碳纳米片用于电催化还原CO2生成CO。研究发现高温热解能将MOF中Ni2+转化为Ni+-N-C和Ni2+-N-C结构,且Ni+-N-C含量依赖于热解温度——其含量随热解温度增加呈现火山型变化。800 ℃下,Ni2+到Ni+-N-C的转化和石墨化的C生成达到最优水平。Ni+-N-C结构有适宜的*CO中间体结合能,能有效地抑制析氢反应的同时还能促进CO生成。因此,800 ℃热处理制得的材料(Ni-N-C-800)催化CO2生成CO效率最高。调节电解液浓度,能进一步优化电催化性能。当电解液(碳酸氢钾)浓度为0.5 mol·L-1时,Ni-N-C-800的CO生成选择性在较宽电压窗口内(-0.77到-1.07 V vs. RHE)都高于90%,且具有优良的稳定性。这些结果表明,选择合适的前躯体通过调控热解温度以及氮掺杂可以有效提高镍基MOF衍生催化剂的二氧化碳电催化性能。  相似文献   

10.
11.
12.
Afacile hydrothermal strategy is adopted to synthesize the composite of NiCo-layered double hydroxide(NiCo-LDH) with biomass carbon as substrate for supercapacitor electrodes. The prepared NiCo@BC was characterized by means of X-ray diffraction(XRD), scanning electronic microscopy(SEM), Fourier transform infrared spectroscopy(FTIR) and Raman spectroscopy, and electrochemical tests. The SEM images demonstrated that numerous NiCo-LDH nanosheets directly grew on the surface of biomass carbon uniformly. Electrochemical tests indicated that the NiCo@BC electrode exhibited good capacitive behavior with a specific capacitance of 606.4 F/g at the current density of 0.5 A/g. In addition, the composite electrode showed excellent cyclic stability of 87.1% even after 1000 cycles. These results manifest that NiCo@BC nanocomposite is a promising candidate for the electrode material for future supercapacitor practical applications.  相似文献   

13.
The recovery of gold from wastewater is necessary from both environmental and economic standpoints. Metal–organic frameworks (MOFs) can serve as high-capacity and selective adsorbents, as shown in a recent work by Zhao and co-workers. Their novel three-dimension cationic framework goes further than selectively adsorbing AuCl4. It also serves as a stable platform to transform adsorbed gold into an efficient catalyst for the electrochemical reduction of CO2. This work highlights the versatility of MOFs, which can serve as selective adsorbents and as a support for nanoparticle catalysts.  相似文献   

14.
A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-1-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr2 and Pb2 extraction in supercritical carbon dioxide.  相似文献   

15.
A wide variety of alcohols and phenols were protected as trimethylsilyl ethers using 1,1,1,3,3,3-hexamethyl disilazane catalyzed by aspartic acid as a non-toxic,metal-free,and green organocatalyst at room temperature in acetonitrile under mild and heterogeneous conditions.The procedure is operationally simple and the silylated product was obtained in high yield and purity.  相似文献   

16.
High-temperature water reactions to reduce carbon dioxide were carried out by using an organic reductant and a series of metals and metal oxides as catalysts, as well as activated carbon (C). As CO2 source, sodium bicarbonate and ammonium carbamate were used. Glucose was the reductant. Cu, Ni, Pd/C 5%, Ru/C 5%, C, Fe2O3 and Fe3O4 were the catalysts tested. The products of CO2 reduction were formic acid and other subproducts from sugar hydrolysis such as acetic acid and lactic acid. Reactions with sodium bicarbonate reached higher yields of formic acid in comparison to ammonium carbamate reactions. Higher yields of formic acid (53% and 52%) were obtained by using C and Fe3O4 as catalysts and sodium bicarbonate as carbon source. Reactions with ammonium carbamate achieved a yield of formic acid up to 25% by using Fe3O4 as catalyst. The origin of the carbon that forms formic acid was investigated by using NaH13CO3 as carbon source. Depending on the catalyst, the fraction of formic acid coming from the reduction of the isotope of sodium bicarbonate varied from 32 to 81%. This fraction decreased in the following order: Pd/C 5% > Ru/C 5% > Ni > Cu > C ≈ Fe2O3 > Fe3O4.  相似文献   

17.
《Electroanalysis》2018,30(3):466-473
In this work, a metal‐organic frameworks‐based porous carbon was explored for glucose oxidase immobilization and glucose sensing. ZIF‐67 was chosen as the precursors for the calcination treatment. The formed Co nanoparticles induced the graphitization of the carbon during the carbonization, resulting in a good conductivity. The followed HCl treatment partly removed the formed Co nanoparticles to give a larger specific surface area of the porous carbon due to the generated space voids from the dissolved Co nanoparticles. The resulting MOFs‐derived porous carbon show an improved loading performance toward glucose oxidase, and fast electron transfer was also demonstrated. This work proves the MOFs‐derived porous carbon as a novel and outstanding platform for the enzymatic electrocatalysis for the sensors and energy conversion devices.  相似文献   

18.
AmperometricGlucoseSensorwithTetrathiafulvaleneasanElectronTransferMediatorSUNChang-qing,YANGXu,LUANChai-xia,GAOQianandXUHong...  相似文献   

19.
A sunlight‐powered process is reported that employs carbon dots (CDs) as light absorbers for the conversion of lignocellulose into sustainable H2 fuel and organics. This photocatalytic system operates in pure and untreated sea water at benign pH (2–8) and ambient temperature and pressure. The CDs can be produced in a scalable synthesis directly from biomass itself and their solubility allows for good interactions with the insoluble biomass substrates. They also display excellent photophysical properties with a high fraction of long‐lived charge carriers and the availability of a reductive and an oxidative quenching pathway. The presented CD‐based biomass photoconversion system opens new avenues for sustainable, practical, and renewable fuel production through biomass valorization.  相似文献   

20.
Biomass, as the most abundant and sustainable resource on the earth, has been regarded as an ideal carbon source to prepare various carbon materials. However, manufacturing shape-memory carbon aerogels with excellent compressibility and elasticity from biomass remains an open challenge. Herein, a cellulose-derived carbon aerogel with an anisotropic architecture is fabricated with the assistance of graphene oxide (GO) through a directional freeze-drying process and carbonization. The carbon aerogel displays excellent shape-memory performances, with high stress and height retentions of 93.6% and 95.5% after 1000 compression cycles, respectively. Moreover, the carbon aerogel can identify large ranges of compression strain (10–80%), and demonstrates excellent current stability during cyclic compression. The carbon aerogel can precisely capture a variety of biological signals in the human body, and thus can be used in wearable electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号