首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While palladium catalysis is ubiquitous in modern chemical research, the recovery of the active transition‐metal complex under routine laboratory applications is frequently challenging. Described herein is the concept of alternative cross‐coupling cycles with a more robust (air‐, moisture‐, and thermally‐stable) dinuclear PdI complex, thus avoiding the handling of sensitive Pd0 species or ligands. Highly efficient C? SCF3 coupling of a range of aryl iodides and bromides was achieved, and the recovery of the PdI complex was accomplished via simple open‐atmosphere column chromatography. Kinetic and computational data support the feasibility of dinuclear PdI catalysis. A novel SCF3‐bridged PdI dimer was isolated, characterized by X‐ray crystallography, and verified to be a competent catalytic intermediate.  相似文献   

2.
The direct decarboxylative arylation of α‐oxo acids has been achieved by synergistic visible‐light‐mediated photoredox and nickel catalysis. This method offers rapid entry to aryl and alkyl ketone architectures from simple α‐oxo acid precursors via an acyl radical intermediate. Significant substrate scope is observed with respect to both the oxo acid and arene coupling partners. This mild decarboxylative arylation can also be utilized to efficiently access medicinal agents, as demonstrated by the rapid synthesis of fenofibrate.  相似文献   

3.
An unprecedented α‐allylation of amines was achieved by combining palladium catalysis and visible‐light photoredox catalysis. In this dual catalysis process, the catalytic generation of allyl radical from the corresponding π‐allylpalladium intermediate was achieved without additional metal reducing reagents (redox‐neutral). Various allylation products of amines were obtained in high yields through radical cross‐coupling under mild reaction conditions. Moreover, the transformation was applied to the formal synthesis of 8‐oxoprotoberberine derivatives which show potential anticancer properties.  相似文献   

4.
Iodoarene catalysis is a powerful methodology that usually requires an excess of oxidant, or of redox mediator if the terminal oxidant is dioxygen, to generate the key hypervalent iodine intermediate to proceed efficiently. We report that, using the spiro‐cyclization of amides as a benchmark reaction, aerobic iodoarene catalysis can be enabled by relying on a pyrylium photocatalyst under blue light irradiation. This unprecedented dual organocatalytic system allows the use of low catalytic loading of both catalysts under very mild operating conditions.  相似文献   

5.
This work bridges a gap in the cross‐coupling of aliphatic redox‐active esters with aryl zinc reagents. Previously limited to primary, secondary, and specialized tertiary centers, a new protocol has been devised to enable the coupling of general tertiary systems using nickel catalysis. The scope of this operationally simple method is broad, and it can be used to simplify the synthesis of medicinally relevant motifs bearing quaternary centers.  相似文献   

6.
The merging of photoredox and transition‐metal catalysis has become one of the most attractive approaches for carbon–carbon bond formation. Such reactions require the use of two organo‐transition‐metal species, one of which acts as a photosensitizer and the other one as a cross‐coupling catalyst. We report herein an exogenous‐photosensitizer‐free photocatalytic process for the formation of carbon–carbon bonds by direct acceleration of the well‐known nickel‐catalyzed Negishi cross‐coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross‐coupling chemistry that involve the direct visible‐light absorption of organometallic catalytic complexes.  相似文献   

7.
We describe herein an unprecedented asymmetric α‐amination of β‐ketocarbonyls under aerobic conditions. The process is enabled by a simple chiral primary amine through the coupling of a catalytic enamine ester intermediate and a nitrosocarbonyl (generated in situ) derived from N‐hydroxycarbamate. The reaction features high chemoselectivity and excellent enantioselectivity for a broad range of substrates.  相似文献   

8.
Presented herein is a general protocol for the alkylation of simple aryl fluorides with unbiased secondary Grignard reagents by means of nickel catalysis. This study revealed a general Thorpe–Ingold effect in the ligand backbone which confers a high degree of selectivity for the secondary carbon center in the C?C coupling event. This protocol is characterized by mild reaction conditions, robustness, and simplicity. Both electron‐rich and electron‐deficient aryl fluorides are suitable candidates in this transformation. Equally amenable are a variety of heterocycles, permitting the coupling without over alkylation at the electrophilic sites.  相似文献   

9.
The combination of conventional transition‐metal‐catalyzed coupling (2 e? process) and photoredox catalysis (1 e? process) has emerged as a powerful approach to catalyze difficult cross‐coupling reactions under mild reaction conditions. Reported is a palladium carbodicarbene (CDC) complex that mediates both a Suzuki–Miyaura coupling and photoredox catalysis for C?N bond formation upon visible‐light irradiation. These two catalytic pathways can be combined to promote both conventional transition‐metal‐catalyzed coupling and photoredox catalysis to mediate C?H arylation under ambient conditions with a single catalyst in an efficient one‐pot process.  相似文献   

10.
A photochemical dual‐catalytic cross‐coupling to form alkynyl sulfides via C(sp)−S bond formation is described. The cross‐coupling of thiols and bromoalkynes is promoted by a soluble organic carbazole‐based photocatalyst using continuous flow techniques. Synthesis of alkynyl sulfides bearing a wide range of electronically and sterically diverse aromatic alkynes and thiols can be achieved in good to excellent yields (50–96 %). The simple continuous flow setup also allows for short reaction times (30 min) and high reproducibility on gram scale. In addition, we report the first application of photoredox/nickel dual catalysis towards macrocyclization, as well as the first example of the incorporation of an alkynyl sulfide functional group into a macrocyclic scaffold.  相似文献   

11.
NosL is a radical S‐adenosyl‐L ‐methionine (SAM) enzyme that converts L ‐Trp to 3‐methyl‐2‐indolic acid, a key intermediate in the biosynthesis of a thiopeptide antibiotic nosiheptide. In this work we investigated NosL catalysis by using a series of Trp analogues as the molecular probes. Using a benzofuran substrate 2‐amino‐3‐(benzofuran‐3‐yl)propanoic acid (ABPA), we clearly demonstrated that the 5′‐deoxyadenosyl (dAdo) radical‐mediated hydrogen abstraction in NosL catalysis is not from the indole nitrogen but likely from the amino group of L ‐Trp. Unexpectedly, the major product of ABPA is a decarboxylated compound, indicating that NosL was transformed to a novel decarboxylase by an unnatural substrate. Furthermore, we showed that, for the first time to our knowledge, the dAdo radical‐mediated hydrogen abstraction can occur from an alcohol hydroxy group. Our study demonstrates the intriguing promiscuity of NosL catalysis and highlights the potential of engineering radical SAM enzymes for novel activities.  相似文献   

12.
Photochemistry has ushered in a new era in the development of chemistry, and photoredox catalysis has become a hot topic, especially over the last five years, with the combination of visible‐light photoredox catalysis and radical reactions. A novel, simple, and efficient radical oxidative decarboxylative coupling with the assistant of the photocatalyst [Ru(phen)3]Cl2 is described. Various functional groups are well‐tolerated in this reaction and thus provides a new approach to developing advanced methods for aerobic oxidative decarboxylation. The preliminary mechanistic studies revealed that: 1) an SET process between [Ru(phen)3]2+* and aniline play an important role; 2) O2 activation might be the rate‐determining step; and 3) the decarboxylation step is an irreversible and fast process.  相似文献   

13.
A stereodivergent reductive coupling reaction between allylic carbonates and vinyl triflates to furnish both E‐ and Z‐configured 1,4‐dienes has been achieved by visible‐light‐induced photoredox/nickel dual catalysis. The mild reaction conditions allow good compatibility of both vinyl triflates and allylic carbonates. Notably, the stereoselectivity of this synergistic cross‐electrophile coupling can be tuned by an appropriate photocatalyst with a suitable triplet‐state energy, providing a practical and stereodivergent means to alkene synthesis. Preliminary mechanistic studies shed some light on the coupling step as well as the control of the stereoselectivity step.  相似文献   

14.
Visible‐light‐induced ruthenium catalysis has enabled remote C?H alkylations with excellent levels of position control under exceedingly mild conditions at room temperature. The metallaphotocatalysis occurred under exogenous‐photosensitizer‐free conditions and features an ample substrate scope. The robust nature of the photo‐induced mild meta‐C?H functionalization is reflected by the broad functional group tolerance, and the reaction can be carried out in an operationally simple manner, setting the stage for challenging secondary and tertiary meta‐C?H alkylations by ruthenaphotoredox catalysis.  相似文献   

15.
Reported herein is the divergent syntheses of [5,5] and [6,5] spiro‐heterocycles under Lewis‐acid‐assisted palladium catalysis. In particular, an unprecedented switch from alkoxide‐π‐allyl to dienolate reactivity was achieved by the use of palladium‐titanium relay catalysis, and represents umpolung reactivity of vinylethylene carbonates. This method uses a simple procedure and commercially available catalysts, and delivers both classes of spiro‐heterocycles, bearing three contiguous stereocenters, in high yield and uniformly excellent diastereoselectivity.  相似文献   

16.
Readily available alkenylphenols react with allenes under rhodium catalysis to provide valuable 2,2‐disubstituted 2H‐chromenes. The whole process, which involves the cleavage of one C? H bond of the alkenyl moiety and the participation of the allene as a one‐carbon cycloaddition partner, can be considered a simple, versatile, and atom‐economical (5+1) heteroannulation. The reaction tolerates a broad range of substituents both in the alkenylphenol and in the allene, and most probably proceeds through a mechanism involving a rhodium‐catalyzed C? C coupling followed by two sequential pericyclic processes.  相似文献   

17.
Auto‐tandem catalysis (ATC), in which a single catalyst promotes two or more mechanistically different reactions in a cascade pattern, provides a powerful strategy to prepare complex products from simple starting materials. Reported here is an unprecedented auto‐tandem cooperative catalysis (ATCC) for Morita–Baylis–Hillman carbonates from isatins and allylic carbonates using a simple Pd(PPh3)4 precursor. Dissociated phosphine generates phosphorus ylides and the Pd leads to π‐allylpalladium complexes, and they undergo a γ‐regioselective allylic–allylic alkylation reaction. Importantly, a cascade intramolecular Heck‐type coupling proceeds to finally furnish spirooxindoles incorporating a 4‐methylene‐2‐cyclopentene motif. Experimental results indicate that both Pd and phosphine play crucial roles in the catalytic Heck reaction. In addition, the asymmetric versions with either a chiral phosphine or chiral auxiliary are explored, and moderate results are obtained.  相似文献   

18.
Carboxylate esters have many desirable features as electrophiles for catalytic cross‐coupling: they are easy to access, robust during multistep synthesis, and mass‐efficient in coupling reactions. Alkenyl carboxylates, a class of readily prepared non‐aromatic electrophiles, remain difficult to functionalize through cross‐coupling. We demonstrate that Pd catalysis is effective for coupling electron‐deficient alkenyl carboxylates with arylboronic acids in the absence of base or oxidants. Furthermore, these reactions can proceed by two distinct mechanisms for C?O bond activation. A Pd0/II catalytic cycle is viable when using a Pd0 precatalyst, with turnover‐limiting C?O oxidative addition; however, an alternative pathway that involves alkene carbopalladation and β‐carboxyl elimination is proposed for PdII precatalysts. This work provides a clear path toward engaging myriad oxygen‐based electrophiles in Pd‐catalyzed cross‐coupling.  相似文献   

19.
N‐Heterocyclic carbene catalyzed radical reactions are challenging and underdeveloped. In a recent study, Ohmiya, Nagao and co‐workers found that aldehyde carbonyl carbon centers can be coupled with alkyl radicals under NHC catalysis. An elegant aspect of this study is the use of a redox‐active carboxylic ester that behaves as an single‐electron oxidant to convert the Breslow intermediate into a radical adduct and concurrently release an alkyl radical intermediate as a reaction partner.  相似文献   

20.
Cross‐coupling reactions between propargylic alcohols and isocyanides, by means of silver catalysis, have been described. This new reaction is both atom and step efficient and is applicable to a broad scope of substrates, allowing the synthesis of a range of synthetically valuable 2,3‐allenamides in moderate to excellent yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号