首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Droplet microfluidics is an enabling platform for high‐throughput screens, single‐cell studies, low‐volume chemical diagnostics, and microscale material syntheses. Analytical methods for real‐time and in situ detection of chemicals in the droplets will benefit these applications, but they remain limited. Reported herein is a novel heterogeneous chemical sensing strategy based on functionalization of the oil phase with rationally combined sensing reagents. Sub‐nanoliter oil segments containing pH‐sensitive fluorophores, ionophores, and ion‐exchangers enable highly selective and rapid fluorescence detection of physiologically important electrolytes (K+, Na+, and Cl?) and polyions (protamine) in sub‐nanoliter aqueous droplets. Electrolyte analysis in whole blood is demonstrated without suffering from optical interference from the sample matrix. Moreover, an oil phase doped with an aza‐BODIPY dye allows indication of H2O2 in the aqueous droplets, exemplifying sensing of targets beyond ionic species.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
We report the synthesis and analytical application of the first Cu2+‐selective synthetic ion channel based on peptide‐modified gold nanopores. A Cu2+‐binding peptide motif (Gly‐Gly‐His) along with two additional functional thiol derivatives inferring cation‐permselectivity and hydrophobicity was self‐assembled on the surface of gold nanoporous membranes comprising of about 5 nm diameter pores. These membranes were used to construct ion‐selective electrodes (ISEs) with extraordinary Cu2+ selectivities, approaching six orders of magnitude over certain ions. Since all constituents are immobilized to a supporting nanoporous membrane, their leaching, that is a ubiquitous problem of conventional ionophore‐based ISEs was effectively suppressed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号