首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new range of CF3‐substituted aminomethyldiphosphine (P―C―N) ligands ((C6H5)2PCH2)2NR (R = ―C6H4(2‐CF3) ( 1 ), ―C6H4(3‐CF3) ( 1b ) has been synthesized from 2‐(trifluoromethyl)aniline and 3‐(trifluoromethyl)aniline with diphenylphosphine. The aminomethyldiphosphine ligands were reacted with Pd(cod)Cl2 to give corresponding metal complexes, PdLCl2 ( 2a , 2b ). The aminomethyldiphosphine–palladium compounds were characterized by utilizing several methods including NMR (1H, 13C, 31P) and elemental analysis. These compounds were used as catalysts in Suzuki cross‐coupling reaction of aryl chlorides and bromides. The effect of base was also investigated in this current project. CF3‐substituted aminomethyldiphosphine–palladium complexes were found to be efficient catalysts in Suzuki cross‐coupling reaction of activated and deactivated aryl boronic acids. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
三氟乙烯基芳基醚;四氟二溴乙烷;酚;三氟乙烯基芳基醚的合成  相似文献   

3.
This article reports a convenient and general method for the regioselective synthesis of a new series of 2‐alkyl(aryl)‐8‐methyl‐4‐trifluoromethyl‐7‐aminoquinolines in 86–93% yields, from cycloaromatization reactions of N‐(oxotrifluoroalkenyl)‐2,6‐diaminotoluenes in a strongly acidic medium polyphosphoric acid and absence of solvent. The enaminoketone intermediates were easily isolated from the reaction of 4‐alkoxy‐4‐alkyl(aryl)‐1,1,1‐trifluoroalk‐3‐en‐2‐ones [CF3C(O)CH═C(R)OR1, where R = H, Me, Ph, 4‐FPh, 4‐BrPh, 4‐MePh, and R1 = Me, Et] with 2,6‐diaminotoluene (2,6‐DAT) in methanol under mild conditions, in 46–70% yields. Another synthetic route also allowed the regioselective synthesis of 2‐aryl(heteroaryl)‐4‐methyl‐4‐trifluoromethyl‐7‐aminoquinolines from direct cyclocondensation reactions of 4‐alkoxy‐4‐aryl(heteroaryl)‐1,1,1‐trifluoroalk‐3‐en‐2‐ones with 2,6‐diaminotoluene in methanol under mild conditions, in 21–36% yields.  相似文献   

4.
《中国化学》2018,36(3):206-212
A copper‐mediated di‐ and monofluoromethanesulfonylation of arenediazonium tetrafluoroborates using di‐ and monofluoromethanesulfinate reagents provides aryl difluoromethyl (or monofluoromethyl) sulfones in good yields. It was found that the relative reactivity of these sodium fluoroalkanesulfinates in the present reactions decreases in the following order: CH2FSO2Na > CF2HSO2Na > CF3SO2Na.  相似文献   

5.
Geminally diaurated μ2‐aryl complexes have been prepared where gold(I) centers were bridged by the semirigid diphosphine ligands bis(2‐diphenylphosphinophenyl)ether (DPEphos) and 4,6‐bis(diphenylphosphanyl)dibenzo[b,d]furan (DBFphos). Diaurated complexes were synthesized in ligand redistribution reactions of the corresponding di‐gold dichlorides with di‐gold diaryls (six of them new) and silver(I) salts. Diaurated complexes were isolated as salts of the minimally coordinating anions SbF6? and ReO4?. Efforts to prepare salts of the tetraarylborate [B(3,5‐(CF3)2C6H3)4]? led to transmetalation from boron, with crystallization of the fluorinated aryl complex. The new complexes were characterized by multinuclear NMR, absorption and emission spectroscopies, 77 K emission lifetimes, and by combustion analysis; three are crystallographically characterized. Structures of geminally diaurated aryl ligands are compared to those of mono‐aurated analogues. Both crystal structures and density‐functional theory calculations indicate slight but observable disruptions of aryl ligand aromaticity by geminal di‐gold binding. An intermolecular aurophilic interaction in one structurally authenticated complex was examined computationally.  相似文献   

6.
Template combination of copper acetate (Cu(AcO)2?H2O) with sodium dicyanamide (NaN(C≡N)2, 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH2, 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)–(2,4‐alkoxy‐1,3,5‐triazapentadienato) complexes [Cu{NH?C(OR)NC(OR)?NH}2] (R=Me ( 1 ), Et ( 2 ), nPr ( 3 ), iPr ( 4 ), CH2CH2OCH3 ( 5 )) or cationic copper(II)–(2‐alkoxy‐4‐amino‐1,3,5‐triazapentadiene) complexes [Cu{NH?C(OR)NHC(NH2)?NH}2](AcO)2 (R=Me ( 6 ), Et ( 7 ), nPr ( 8 ), nBu ( 9 ), CH2CH2OCH3 ( 10 )), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6 – 10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH?C(OR)NC(NH2)?NH}2] 11 – 15 . Reaction of 11 , 12 or 15 with acetyl acetone (MeC(?O)CH2C(?O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NC NHC(?NH)OR, whereas the same treatment of the cationic complexes 6 , 7 or 10 allows the corresponding metal‐free triazapentadiene salts {NH2C(OR)?NC(NH2)?NH2}(OAc) to be isolated. The alkoxy‐1,3,5‐triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical‐mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent‐free microwave‐assisted synthesis of ketones from secondary alcohols with tert‐butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h?1).  相似文献   

7.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

8.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

9.
The ionization (or basicity) constants (pKb) were determined for many 2‐substituted 4,6‐diamino‐s‐tri‐azines ( I ) by means of the electrometric titration. I includes 2‐alkoxy or aryloxy‐( Ia ), 2‐alkyl‐ or 2‐aryl‐( Ib ), and 2‐alkylamino‐ or 2‐arylamino‐4,6‐diamino‐s‐triazines ( Ic ). For the series with the same alkyl or aryl group, the order of the basicity was found to be Ic < Ib < Ia . A study was made of relationships between the pKb, values of I , and the substituent constants, σp, σm, σp+, σm+, σpO, σmo, σI, σn, and σ*. The Hammett relationships were observed between the pKa values of I, and the substituent constants σm, (or the combination ones, [0.97σm + 0.03σp] as well as another [0.77σI + 0.23σR]). The Taft relationships were also found between the pKa values of Ia , Ib , and Ic and the constants σ*, respectively. Furthermore, in the case of Ic a linear relationship was observed between the pKa values and Σσ8.  相似文献   

10.
Abstract

The reactions of the hexachloro γ5-diazadiphosphetidine, [(MeN)PCl3]2 (I) with NaOR′ (R = Ph or CH2CF3) lead to the isolation of the hitherto unprecedented hexa-(alkoxy)/(aryloxy) derivatives, [(MeN)P(OR′)3]2 (II) which have been characterized by mass spectrometry and NMR (1H and 31P) spectroscopy. The structure of the trifluoroethoxy derivative (II, R′ = CH2CF3) has been confirmed by single crystal X-ray analysis. Analogous reactions of the N-phenyl derivative [(PhN)PCl3]2 afford only the monophosphazenes, PbN=P(OR′)3. Aniline reacts with I in a Kirsanov type of reaction accompanied by ring opening to give a bis(phosphineimino)diphosphazane derivative, (PhN=)(NHPh)(NHMe)PN(Me)-P(NHPh)2(=NPh). The X-ray crystal structure of a related cyclic derivative trans-[PhNP(NMe2)(=NPh)]2 has been determined. The N2P2 ring and the aryl groups attached to the ring nitrogen atoms are coplanar; the exocyclic P=N bond (151.8 pm) is much shorter than the other P-N bonds (162.5, 169.8 pm).  相似文献   

11.
Alkene metathesis with directly fluorinated alkenes is challenging, limiting its application in the burgeoning field of fluoro‐organic chemistry. A new nickel tris(phosphite) fluoro(trifluoromethyl)carbene complex ([P3Ni]=CFCF3) reacts with CF2=CF2 (TFE) or CF2=CH2 (VDF) to yield both metallacyclobutane and perfluorocarbene metathesis products, [P3Ni]=CF2 and CR2=CFCF3 (R=F, H). The reaction of [P3Ni]=CFCF3 with trifluoroethylene also yields metathesis products, [P3Ni]=CF2 and cis/trans‐CFCF3=CFH. However, unlike reactions with TFE and VDF, this reaction forms metallacyclopropanes and fluoronickel alkenyl species, resulting presumably from instability of the expected metallacyclobutanes. DFT calculations and experimental evidence established that the observed metallacyclobutanes are not intermediates in the formation of the observed metathesis products, thus highlighting a novel variant of the Chauvin mechanism enabled by the disparate four‐coordinate transition states.  相似文献   

12.
A new method for the on‐site preparation of tetrafluoroethylene (TFE) and a procedure for its efficient use in pentafluoroethylation by fluoride addition were developed by using a simple two‐chamber system. The on‐site preparation of TFE was accomplished by dimerization of difluorocarbene derived from (trifluoromethyl)trimethylsilane (TMSCF3) under mild conditions. Other fluoroalkylation reactions, such as (aryloxy)tetrafluoroethylation and tetrafluoroethylation processes, were also achieved using a similar approach. This work not only demonstrates a convenient and safe approach for the generation and use of TFE in academic laboratories, but also provides a new strategy for pentafluoroethylation.  相似文献   

13.
A new method for the on‐site preparation of tetrafluoroethylene (TFE) and a procedure for its efficient use in pentafluoroethylation by fluoride addition were developed by using a simple two‐chamber system. The on‐site preparation of TFE was accomplished by dimerization of difluorocarbene derived from (trifluoromethyl)trimethylsilane (TMSCF3) under mild conditions. Other fluoroalkylation reactions, such as (aryloxy)tetrafluoroethylation and tetrafluoroethylation processes, were also achieved using a similar approach. This work not only demonstrates a convenient and safe approach for the generation and use of TFE in academic laboratories, but also provides a new strategy for pentafluoroethylation.  相似文献   

14.
Trifluoromethylation reactions have recently received increased attention because of the beneficial effect of the trifluoromethyl group on the pharmacological properties of numerous substances. A common method to introduce the trifluoromethyl group employs the Ruppert–Prakash reagent, that is, Si(CH3)3CF3, together with a copper(I) halide. We have applied this method to the trifluoromethylation of aromatic alkynes and used electrospray‐ionization mass spectrometry to investigate the mechanism of these reactions in tetrahydrofuran, dichloromethane, and acetonitrile as well as with and without added 1,10‐phenanthroline. In the absence of the alkyne component, the homoleptic ate complexes [Cu(CF3)2]? and [Cu(CF3)4]? were observed. In the presence of the alkynes RH, the heteroleptic complexes [Cu(CF3)3R]? were detected as well. Upon gas‐phase fragmentation, these key intermediates released the cross‐coupling products R?CF3 with perfect selectivity. Apparently, the [Cu(CF3)3R]? complexes did not originate from homoleptic cuprate anions, but from unobservable neutral precursors. The present results moreover point to the involvement of oxygen as the oxidizing agent.  相似文献   

15.
The effect of intermolecular hydrogen bonding on the photophysical properties of N‐methyl‐1,8‐naphthalimide ( 2 ) has been investigated by time‐dependent density functional theory (TD‐DFT) method. The UV and IR spectra of 2 monomer and its hydrogen‐bonded complexes formed with 2,2,2‐trifluoroethanol (TFE) 2 +TFE and 2 +2TFE have been calculated, which confirm the presence of intermolecular hydrogen bonding interactions between the carbonyl groups of the aromatic imide and the hydroxyl group of the polyfluorinated alcohol. The absorption and fluorescence intensities going from 2 monomer via hydrogen‐bonded complex 2 +TFE to 2 +2TFE were found to be gradually enhanced with the wavelength gradually red‐shifted. The enhancements of the fluorescence intensities from 2 monomer to hydrogen‐bonded complexes 2 +TFE and 2 +2TFE were attributed to the decrease of the intersystem crossing (ISC) efficiency from the first excited singlet state S1 1(ππ*) to the second excited triplet state T2 3(nπ*), whose energy was increased relative to its ground state due to the intermolecular hydrogen bonding interactions.  相似文献   

16.
The well known fluorosulfonyldifluoroacetyl fluoride (I), FOCCF2SO2F (I) quantitatively formed from sulfur trioxide and TFE through the tetrafluoroethanesultone has been converted into the octafluoro- -5-iodo-3-oxapentanesulfonyl fluoride (II) ICF2CF2OCF2CF2SO2F (II) by the well known reaction (1) involving MF, iodine, TFE in aprotic solvents.The iodo compound (II) allowed us to obtain TFE telomers having both fluorosulfonyl and iodo as terminal groups.The said telomers have been easily converted into surfactants (III) through fluorination and vinyl derivatives (IV) by dehalogenation.CF3CF2(CF2CF2)nOCF2CF2SO3M (III)CF2CF(CF2CF2)nOCF2CF2SO2F (IV)  相似文献   

17.
A novel copper‐catalyzed one‐pot functionalization of homopropargylic alcohols that involves trifluoromethylation, aryl migration, and formation of a carbonyl moiety has been developed. This reaction constitutes the first direct conversion of homopropargylic alcohols into CF3‐containing 3‐butenal or 3‐buten‐1‐one derivatives in a regioselective manner. Mechanistic studies indicate that the 1,4‐aryl migration proceeds through a radical pathway.  相似文献   

18.
An anion >P–O has been applied as an efficient synthetic precursor of four coordination compounds of the R2P(O)–(O)PR2 type, namely diphosphine dioxides (R = alkyl, aryl) as well as hypophosphoric acid esters (R = alkoxy, aryloxy), in a one‐pot reaction. Furthermore, there were elaborated some mechanistic aspects of the origin of the >P(O)–O–(O)P< anhydride, as a side‐product of the reaction between the anion >P–O and >P(O)X (X = Cl, Br) electrophiles. Attention is focused on the synthesis of the >P(O)–(O)P< compounds. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:310–316, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20208  相似文献   

19.
Trifluoroethoxylation of hexafluoropropene with 2,2,2-trifluoroethanol (TFE) were conducted using an alkali metal fluoride catalyst to produce CF3CHFCF2OCH2CF3. KF exhibited the highest yield and selectivity of CF3CHFCF2OCH2CF3, whereas LiF and NaF were inactive for the trifluoroethoxylation reaction. The same reaction also proceeded well in the presence of RbF or CsF, but yielded large amounts of olefinic and high molecular weight side products, implying that the size of alkali metal cation or the degree of MF dissociation plays an important role in determining the activity and the product composition. FT-IR and NMR experiments revealed that CsF interacts with TFE more strongly than KF through a hydrogen bonding. The experimental and spectroscopic results suggest that the degree of MF dissociation should be in the medium range for the selective production of CF3CHFCF2OCH2CF3 in high yield and selectivity.  相似文献   

20.
We report herein a practical method for taming Langlois’ reagent CF3SO2Na to generate CuSCF3 by a triphenylphospine‐mediated deoxygenative reduction process. This chemistry highlights a novel utilization of the inherent CF3S skeleton of Langlois’ reagent as a CF3S feedstock under mild conditions. The CuSCF3 intermediate generated by this protocol can react with a wide array of supporting ligands to furnish several air‐stable [LCu(SCF3)] complexes as valuable trifluoromethylthiolating agents. In addition, the CuSCF3 intermediate can be directly employed for the trifluoromethylthiolation of (hetero)aryl iodides with operational simplicity and atomic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号