首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Photoswitchable bioprobes enable bidirectional control of cell physiology with different wavelengths of light. Many current photoswitches use cytotoxic UV light and are limited by the need for constant illumination owing to thermal relaxation in the dark. Now a photoswitchable tetrafluoroazobenzene(4FAB)‐based ion channel antagonist has been developed that can be efficiently isomerized in two separate optical channels with visible light. Importantly, the metastable cis configuration showed very high stability in the dark over the course of days at room temperature. In neurons, the 4FAB antagonist reversibly blocks voltage‐gated ion channels with violet and green light. Furthermore, photoswitching could also be achieved with two‐photon excitation yielding high spatial resolution. 4FAB probes have the potential to enable long‐term biological studies where both ON and OFF states can be maintained in the absence of irradiation.  相似文献   

2.
《化学:亚洲杂志》2017,12(17):2197-2201
A novel photodynamic therapy nanoplatform based on mesoporous‐silica‐coated upconverting nanoparticles (UCNP) with electrostatic‐driven ultrafast photosensitizer (PS) loading and 808 nm near infrared (NIR)‐light‐triggering capabilities has been fabricated. By positively charging inner channels of the mesoporous silica shell with amino groups, a quantitative dosage of negatively charged PS, exemplified with Rose Bengal (RB) molecules, can be loaded in 2 min. In addition, the electrostatic‐driven technique simultaneously provides the platform with both excellent PS dispersity and leak‐proof properties due to the repulsion between the same‐charged molecules and the electrostatic attraction between different‐charged PS and silica channel walls, respectively. The as‐coated silica shell with an ultrathin thickness of 12±2 nm is delicately fabricated to facilitate ultrafast PS loading and efficient energy transfer from UCNP to PS. The outside surface of the silica shell is capped with hydrophilic β‐cyclodextrin, which not only enhances the dispersion of resulting nanoparticles in water but also plays a role of “gatekeeper”, blocking the pore opening and preventing PS leaking. The in vitro cellular lethality experiment demonstrates that RB molecules can be activated to effectively generate singlet oxygen and kill cancer cells upon 808 nm NIR light irradiation.  相似文献   

3.
Channelrhodopsins (ChRs) are light‐gated ion channels that are widely used in optogenetics. They allow precise control of neuronal activity with light, but a detailed understanding of how the channel is gated and the ions are conducted is still lacking. The recent determination of the X‐ray structural model in the closed state marks an important milestone. Herein the open state structure is presented and the early formation of the ion conducting pore is elucidated in atomic detail using time‐resolved FTIR spectroscopy. Photo‐isomerization of the retinal‐chromophore causes a downward movement of the highly conserved E90, which opens the pore. Molecular dynamic (MD) simulations show that water molecules invade through this opened pore, Helix 2 tilts and the channel fully opens within ms. Since E90 is a highly conserved residue, the proposed E90‐Helix2‐tilt (EHT) model might describe a general activation mechanism and provides a new avenue for further mechanistic studies and engineering.  相似文献   

4.
Photoswitchable bioprobes enable bidirectional control of cell physiology with different wavelengths of light. Many current photoswitches use cytotoxic UV light and are limited by the need for constant illumination owing to thermal relaxation in the dark. Now a photoswitchable tetrafluoroazobenzene(4FAB)‐based ion channel antagonist has been developed that can be efficiently isomerized in two separate optical channels with visible light. Importantly, the metastable cis configuration showed very high stability in the dark over the course of days at room temperature. In neurons, the 4FAB antagonist reversibly blocks voltage‐gated ion channels with violet and green light. Furthermore, photoswitching could also be achieved with two‐photon excitation yielding high spatial resolution. 4FAB probes have the potential to enable long‐term biological studies where both ON and OFF states can be maintained in the absence of irradiation.  相似文献   

5.
In living systems, temperature‐sensitive ion channels play a vital role in numerous cellular processes and can be controlled by biological ion channels in response to specific temperature stimuli. Facile pillar[5]arene‐based host–guest interactions are introduced into a nanochannel pattern for constructing a temperature‐sensitive artificial channel. Ion transport was switched from cations to anions by controlling the extent of the host bound to the guest with temperature stimuli. This efect is mainly due to the changing of the inner surface charge and wettability of the nanochannel during the process. This study paves a new way for better understanding the mechanism of temperature‐sensitive properties and shows great promise for biomedical research.  相似文献   

6.
A method is presented for the initiation of free‐radical and free‐radical‐promoted cationic photopolymerizations by in‐source lighting in the near‐infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron‐transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free‐radical‐promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N ‐vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved.  相似文献   

7.
The bis‐guanidinium toxins are a collection of natural products that display nanomolar potency against select isoforms of eukaryotic voltage‐gated Na+ ion channels. We describe a synthetic strategy that enables access to four of these poisons, namely 11‐saxitoxinethanoic acid, C13‐acetoxy saxitoxin, decarbamoyl saxitoxin, and saxitoxin. Highlights of this work include an unusual Mislow–Evans rearrangement and a late‐stage Stille ketene acetal coupling. The IC50 value of 11‐saxitoxinethanoic acid was measured against rat NaV1.4, and found to be 17.0 nm , similar to those of the sulfated toxins gonyautoxin II and III.  相似文献   

8.
Ion channel proteins provide gated pores that allow ions to passively flow across cell membranes. Owing to their crucial roles in regulating transmembrane ion flow, ion channel proteins have attracted the attention of pharmaceutical investigators as drug targets for use in the studies of both therapeutics and side effects. In this review, we discuss the current technologies that are used in the formation of ion channel‐integrated bilayer lipid membranes (BLMs) in microfabricated devices as a potential platform for next‐generation drug screening systems. Advances in BLM fabrication methodology have allowed the preparation of BLMs in sophisticated formats, such as microfluidic, automated, and/or array systems, which can be combined with channel current recordings. A much more critical step is the integration of the target channels into BLMs. Current technologies for the functional reconstitution of ion channel proteins are presented and discussed. Finally, the remaining issues of the BLM‐based methods for recording ion channel activities and their potential applications as drug screening systems are discussed.  相似文献   

9.
10.
Archaerhodopsin‐3 (AR3) is a member of the microbial rhodopsin family of hepta‐helical transmembrane proteins, containing a covalently bound molecule of all‐trans retinal as a chromophore. It displays an absorbance band in the visible region of the solar spectrum (λmax 556 nm) and functions as a light‐driven proton pump in the archaeon Halorubrum sodomense. AR3 and its mutants are widely used in neuroscience as optogenetic neural silencers and in particular as fluorescent indicators of transmembrane potential. In this study, we investigated the effect of analogs of the native ligand all‐trans retinal A1 on the spectral properties and proton‐pumping activity of AR3 and its single mutant AR3 (F229S). While, surprisingly, the 3‐methoxyretinal A2 analog did not redshift the absorbance maximum of AR3, the analogs retinal A2 and 3‐methylamino‐16‐nor‐1,2,3,4‐didehydroretinal (MMAR) did generate active redshifted AR3 pigments. The MMAR analog pigments could even be activated by near‐infrared light. Furthermore, the MMAR pigments showed strongly enhanced fluorescence with an emission band in the near‐infrared peaking around 815 nm. We anticipate that the AR3 pigments generated in this study have widespread potential for near‐infrared exploitation as fluorescent voltage‐gated sensors in optogenetics and artificial leafs and as proton pumps in bioenergy‐based applications.  相似文献   

11.
Channelrhodopsins (ChR1 and ChR2) are directly light‐gated ion channels acting as sensory photoreceptors in the green alga Chlamydomonas reinhardtii. These channels open rapidly after light absorption and both become permeable for cations such as H+, Li+, Na+, K+ and Ca2+. Km for Ca2+ is 16.6 mm in ChR1 and 18.3 mm in ChR2 whereas the Km values for Na+ are higher than 100 mm for both ChRs. Action spectra of ChR1 peak between 470 and 500 nm depending on the pH conditions, whereas ChR2 peaks at 470 nm regardless of the pH value. Now we created two chimeric ChRs possessing helix 1–5 of ChR1 and 6, 7 of ChR2 (ChR1/25/2), or 1, 2 from ChR1 and 3–7 from ChR2 (ChR1/22/5). Both ChR‐chimera still showed pH‐dependent action spectra shifts. Finally, a mutant ChR1E87Q was generated that inactivated only slowly in the light and showed no spectral shift upon pH change. The results indicate that protonation/deprotonation of E87 in helix 1 alters the chromophore polarity, which shifts the absorption and modifies channel inactivation accordingly. We propose a trimodal counter ion complex for ChR1 but only a bimodal complex for ChR2.  相似文献   

12.
Green‐to‐red photoconvertible fluorescent proteins (pcFPs) are powerful tools for super‐resolution localization microscopy and protein tagging. Recently, they have been found to undergo efficient photoconversion not only by the traditional 400‐nm illumination but also by an alternative method termed primed conversion, employing dual wavelength illumination with blue and far‐red/near‐infrared light. Primed conversion has been reported only for Dendra2 and its mechanism has remained elusive. Here, we uncover the molecular mechanism of primed conversion by reporting the intermediate “primed” state to be a triplet dark state formed by intersystem crossing. We show that formation of this state can be influenced by the introduction of serine or threonine at sequence position 69 (Eos notation) and use this knowledge to create “pr”‐ (for primed convertible) variants of most known green‐to‐red pcFPs.  相似文献   

13.
Engineering near‐infrared (NIR) light‐sensitive enzymes remains a huge challenge. A photothermal effect‐associated method is developed for tailoring the enzymatic activity of enzymes by exposure to NIR light. An ultrasmall platinum nanoparticle was anchored in an enzyme to generate local heating upon NIR irradiation, which enhanced the enzyme activity without increasing bulk temperature. Following NIR irradiation, the enzyme activity was tailored rapidly and reversibly, and was modulated by varying laser power density and irradiation time. Four enzymes were engineered, including glucoamylase, glucose oxidase, catalase, and proteinase K with NIR‐light sensitivity, and demonstrated their utility in practical applications such as photolithography and NIR light‐responsive antibacterial or anticancer actions. Our investigation suggests that this approach could be broadly used to engineer enzymes with NIR‐light sensitivity for many biological applications.  相似文献   

14.
This work develops a site‐specific duplexed luminescence resonance energy transfer system on cell surface for simultaneous imaging of two kinds of monosaccharides on a specific protein by single near‐infrared excitation. The single excitation‐duplexed imaging system utilizes aptamer modified upconversion luminescent nanoparticles as an energy donor to target the protein, and two fluorescent dye acceptors to tag two kinds of cell surface monosaccharides by a dual metabolic labeling technique. Upon excitation at 980 nm, only the dyes linked to protein‐specific glycans can be lit up by the donor by two parallel energy transfer processes, for in situ duplexed imaging of glycoforms on specific protein. Using MUC1 as the model, this strategy can visualize distinct glycoforms of MUC1 on various cell types and quantitatively track terminal monosaccharide pattern. This approach provides a versatile platform for profiling protein‐specific glycoforms, thus contributing to the study of the regulation mechanisms of protein functions by glycosylation.  相似文献   

15.
A biomimetic conical submicrochannel (tip side ca. 400 nm) with functions of continuously tunable ion rectification and conductance based on thermoresponsive polymer layer‐by‐layer (LbL) self‐assembly is presented. These self‐assembled polymers with different layers exhibited a capability to regulate the effective channel diameter, and different ion rectifications/conductance were achieved. By controlling temperature, the conformation and wettability of the assembled polymers were reversibly transformed, thus the ion rectification/conductance could be further adjusted subtly. Owing to the synergistic effect, the ion conductance could be tuned over a wide range spanning three orders of magnitude. Moreover, the proposed system can be applied for on‐demand on‐off molecule delivery, which was important for disease therapy. This study opens a new door for regulating channel size according to actual demand and sensing big targets with different size with one channel.  相似文献   

16.
Tumor hypoxia greatly suppresses the therapeutic efficacy of photodynamic therapy (PDT), mainly because the generation of toxic reactive oxygen species (ROS) in PDT is highly oxygen‐dependent. In contrast to ROS, the generation of oxygen‐irrelevant free radicals is oxygen‐independent. A new therapeutic strategy based on the light‐induced generation of free radicals for cancer therapy is reported. Initiator‐loaded gold nanocages (AuNCs) as the free‐radical generator were synthesized. Under near‐infrared light (NIR) irradiation, the plasmonic heating effect of AuNCs can induce the decomposition of the initiator to generate alkyl radicals (R.), which can elevate oxidative‐stress (OS) and cause DNA damages in cancer cells, and finally lead to apoptotic cell death under different oxygen tensions. As a proof of concept, this research opens up a new field to use various free radicals for cancer therapy.  相似文献   

17.
Herein, we show that copper nanostructures, if made anisotropic, can exhibit strong surface plasmon resonance comparable to that of gold and silver counterparts in the near‐infrared spectrum. Further, we demonstrate that a robust confined seeded growth strategy allows the production of high‐quality samples with excellent control over their size, morphology, and plasmon resonance frequency. As an example, copper nanorods (CuNRs) are successfully grown in a limited space of preformed rod‐shaped polymer nanocapsules, thereby avoiding the complex nucleation kinetics involved in the conventional synthesis. The method is unique in that it enables the flexible control and fine‐tuning of the aspect ratio and the plasmonic resonance. We also show the high efficiency and stability of the as‐synthesized CuNRs in photothermal conversion and demonstrate their incorporation into nanocomposite polymer films that can be used as active components for constructing light‐responsive actuators and microrobots.  相似文献   

18.
Boron has been employed in materials science as a marker for imaging specific structures by electron energy loss spectroscopy (EELS) or secondary ion mass spectrometry (SIMS). It has a strong potential in biological analyses as well; however, the specific coupling of a sufficient number of boron atoms to a biological structure has proven challenging. Herein, we synthesize tags containing closo‐1,2‐dicarbadodecaborane, coupled to soluble peptides, which were integrated in specific proteins by click chemistry in mammalian cells and were also coupled to nanobodies for use in immunocytochemistry experiments. The tags were fully functional in biological samples, as demonstrated by nanoSIMS imaging of cell cultures. The boron signal revealed the protein of interest, while other SIMS channels were used for imaging different positive ions, such as the cellular metal ions. This allows, for the first time, the simultaneous imaging of such ions with a protein of interest and will enable new biological applications in the SIMS field.  相似文献   

19.
20.
As a remarkable class of plasmonic materials, two dimensional (2D) semiconductor compounds have attracted attention owing to their controlled manipulation of plasmon resonances in the visible light spectrum, which outperforms conventional noble metals. However, tuning of plasmonic resonances for 2D semiconductors remains challenging. Herein, we design a novel method to obtain amorphous molybdenum oxide (MoO3) nanosheets, in which it combines the oxidation of MoS2 and subsequent supercritical CO2‐treatment, which is a crucial step for the achievement of amorphous structure of MoO3. Upon illumination, hydrogen‐doped MoO3 exhibits tuned surface plasmon resonances in the visible and near‐IR regions. Moreover, a unique behavior of the amorphous MoO3 nanosheets has been found in an optical biosensing system; there is an optimum plasmon resonance after incubation with different BSA concentrations, suggesting a tunable plasmonic device in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号