首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The design of aqueous probes and binders for complex, biologically relevant anions presents a key challenge in supramolecular chemistry. Herein, a tetrahedral assembly with cationic faces and corners is reported that is capable of discriminating between anionic and neutral guests in water. Electrostatic repulsion between subcomponents can be overcome by the addition of an anionic template, or generating a robust covalent framework by incorporating tris(2‐aminoethyl)amine (TREN). The resultant TREN‐capped, water‐soluble, fluorescent cage binds mono‐ and poly‐phosphoric esters, including nucleotides. Its covalent skeleton renders it stable at micromolar concentrations in water, enabling the fluorometric detection of biologically relevant guests in an aqueous environment. Selective supramolecular encapsulants, such as 1 , could enable new sensing applications, such as recognition of toxins and drugs, under biological conditions.  相似文献   

2.
3.
Control over the solubility properties of container molecules is a central challenge in host–guest chemistry. Herein we present a simple anion-exchange protocol that allows the dissolution in water of various hydrophobic metal–organic container molecules prepared by iron(II)-templated subcomponent self-assembly. Our process involved the exchange of less hydrophilic trifluoromethanesulfonate anions for hydrophilic sulfate; the resulting water-soluble cages could be rendered water-insoluble through reverse anion exchange. Notably, this strategy allowed cargoes within capsules, including polycyclic aromatic compounds and complex organic drugs, to be brought into water. Hydrophobic effects appeared to enhance binding, as many of these cargoes were not bound in non-aqueous media. Studies of the scope of this method revealed that cages containing tetratopic and tritopic ligands were more stable in water, whereas cages with ditopic ligands disassembled.  相似文献   

4.
5.
6.
Photothermal therapy at the NIR‐II biowindow (1000–1350 nm) is drawing increasing interest because of its large penetration depth and maximum permissible exposure. Now, the supramolecular radical dimer, fabricated by N,N′‐dimethylated dipyridinium thiazolo[5,4‐d]thiazole radical cation (MPT.+) and cucurbit[8]uril (CB[8]), achieves strong absorption at NIR‐II biowindow. The supramolecular radical dimer (2MPT.+‐CB[8]) showed highly efficient photothermal conversion and improved stability, thus contributing to the strong inhibition on HegG2 cancer cell under 1064 nm irradiation even penetrating through chicken breast tissue. This work provides a novel approach to construct NIR‐II chromophore by tailor‐made assembly of organic radicals. It is anticipated that this study provides a new strategy to achieve NIR‐II photothermal therapy and holds promises in luminescence materials, optoelectronic materials, and also biosensing.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Nanotubes assembled from macrocyclic precursors offer a unique combination of low dimensionality, structural rigidity, and distinct interior and exterior microenvironments. Usually the weak stacking energies of macrocycles limit the length and mechanical strength of the resultant nanotubes. Imine‐linked macrocycles were recently found to assemble into high‐aspect ratio (>103), lyotropic nanotubes in the presence of excess acid. Yet these harsh conditions are incompatible with many functional groups and processing methods, and lower acid loadings instead catalyze macrocycle degradation. Here we report pyridine‐2,6‐diimine‐linked macrocycles that assemble into high‐aspect ratio nanotubes in the presence of less than 1 equiv of CF3CO2H per macrocycle. Analysis by gel permeation chromatography and fluorescence spectroscopy revealed a cooperative self‐assembly mechanism. The low acid concentrations needed to induce assembly enabled nanofibers to be obtained by touch‐spinning, which exhibit higher Young's moduli (1.33 GPa) than many synthetic polymers and biological filaments. These findings represent a breakthrough in the design of inverse chromonic liquid crystals, as assembly under such mild conditions will enable the design of structurally diverse and mechanically robust nanotubes from synthetically accessible macrocycles.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号