首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here, we report the morphology variation in a series of PS-b-PI-b-PS' asymmetric triblock copolymer and PS homopolymer (hPS) blends, where PS' and PS are polystyrene blocks with a molecular weight ratio of approximately 0.11 and PI is poly(isoprene). We find that adding a small amount of hPS results in significant order–order transition (OOT) boundary deflection toward higher PS volume fractions fPS, which is accompanied by morphology re-entry. For example, the neat triblock copolymer with a PS + PS' volume fraction of fPS = 0.38 exhibits a lamellar microphase; adding a small amount of hPS reverts the morphology into a hexagonal phase with PS cylinders, while further increasing the hPS fraction leads to normal OOTs from PS cylinders to lamellae, to PI cylinders and finally to spheres. The morphology variation reported here is significantly different from that reported in binary blends of diblock or symmetric triblock copolymer with homopolymer. While the domain features of the LAM structure can be correctly reproduced by self-consistent field theory (SCFT), the observed morphology re-entry is absent in the theoretical SCFT phase diagram. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 169–179  相似文献   

2.
The morphologies of AB diblock copolymer film between the substrate and surface were investigated via Monte Carlo simulations on simple cubic lattices. The morphological dependence of the diblock copolymer thin film on the thickness, as well as the composition and interactive intensity has been mainly studied. With the increase of A‐segments fraction, various microdomain morphologies including regular parallel stripe‐like, mesh‐like, and normal lamella near the region of the surface were generated in this work. The morphology of thin films of asymmetric diblock copolymer was found to form cylinders in a bulk system when Lz was equal to 30. The morphologies of PS‐b‐PDMS diblock copolymer films have been studied via atomic force microscopy (AFM) and transition electron microscopy (TEM) measurements. The surface morphology of the PS‐b‐PDMS copolymer thin film shows a mesh‐like microphase separated structure, and PDMS continuous phase protruded on the PS dispersed phase. The surface composition of PS‐b‐PDMS copolymer thin films was measured by means of X‐ray photoelectron spectroscopy (XPS) and ATR‐IR. The comparison results show that the experimental observations are in good agreement with the simulation results. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1835–1845, 2006  相似文献   

3.
The phase separation behavior of ternary blends of two homopolymers, PMMA and PS, and a block copolymer of styrene and methylmethacrylate, P(S-b-MMA), was studied. The homopolymers were of equal chain length and were kept at equal amounts. Two copolymers were used with blocks of equal length, which exceeded or equaled that of the homopolymer chains. Varied was the copolymer contentf. Films were cast from toluene, which is a nonselective solvent. The morphologies of the cast films were compared with the structure of the critical fluctuations in solution, which were calculated in mean field approximation. The axis of blend compositionsf can be divided into parts of dominating macrophase and microphase separation. Above a transition concentrationf o, all copolymer chains are found in phase interfaces. Belowf o, part of them form micelles within the homopolymer phases.  相似文献   

4.
Symmetric polystyrene (PS)–poly(dimethylsiloxane) (PDMS) diblock copolymers were mixed into a 20% dispersion of PDMS in PS. The effect of adding the block copolymer on the blend morphology was examined as a function of the block copolymer molecular weight (Mn,bcp), concentration, and viscosity ratio (ηr). When blended together with the PS and PDMS homopolymers, most of the block copolymer appeared as micelles in the PS matrix. Even when the copolymer was preblended into the PDMS dispersed phase, block copolymer micelles in the PS matrix phase were observed with transmission electron microscopy after mixing. Adding 16 kg/mol PS–PDMS block copolymer dramatically reduced the PDMS particle size, but the morphology, as examined by scanning electron microscopy, was unstable upon thermal annealing. Adding 156 kg/mol block copolymer yielded particle sizes similar to those of blends with 40 or 83 kg/mol block copolymers, but only blends with 83 kg/mol block copolymer were stable after annealing. For a given value of Mn,bcp, a minimum PDMS particle size was observed when ηr ~ 1. When ηr = 2.6, thermally stable, submicrometer particles as small as 0.6 μm were observed after the addition of only 3% PS–PDMS diblock (number‐average molecular weight = 83 kg/mol) to the blend. As little as 1% 83 kg/mol block copolymer was sufficient to stabilize a 20% dispersion of 1.1‐μm PDMS particles in PS. Droplet size reduction was attributed to the prevention of coalescence caused by small amounts of block copolymer at the interface. The conditions under which block copolymer interfacial adsorption and interpenetration were facilitated were explained with Leibler's brush theory. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 346–357, 2002; DOI 10.1002/polb.10098  相似文献   

5.
Blends of self‐assembling polystyrene‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) diblock‐copolymers and poly(4‐vinyl pyridine) (P4VP) homopolymers were used to fabricate isoporous and nanoporous films. Block copolymers (BCP) self‐assembled into a structure where the minority component forms very uniform cylinders, while homopolymers, resided in the core of the cylinders. Selective removal of the homopolymers by ethanol immersion led to the formation of well‐ordered pores. In films without added homopolymer, just immersion in ethanol and subsequent swelling of the P4VP blocks was found to be sufficient to create pores. Pore sizes were tuned between 10 and 50 nm by simply varying the homopolymer content and the molecular weight of the block‐copolymer. Uniformity was lost when the average pore size exceeded 30 nm because of macrophase separation. However, preparation of films from low MW diblock copolymers showed that it is possible to have excellent pore size control and a high porosity, while retaining a low pore size distribution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1568–1579  相似文献   

6.
The phase behavior of intermediately segregated (χN = 45) poly(ethylene)‐poly(ethylethylene) (PE–PEE) diblock copolymers and PE–PEE binary blends are characterized using transmission electron microscopy and small‐angle X‐ray scattering. Surprisingly, the preparation‐dependent, nonequilibrium phase behavior can be overwhelming even at this degree of segregation. A pure diblock with a poly(ethylene) volume fraction of fPE = 0.46 exhibited coexisting lamellae and perforated layers when prepared using a precipitation technique, but contained only the lamellar morphology when solvent cast. This preparation dependence was more dramatic in binary diblock copolymer blends with average compositions of 〈fPE〉 = 0.44, 0.46, and 0.48. Precipitated blends exhibited a microphase separated structure that was disordered and bicontinuous; however, solvent cast samples exhibited either a cylindrical, coexisting cylindrical and lamellar, or lamellar morphology. This nonequilibrium behavior is attributed to the high degree of segregation and the proximity to the cylinder/lamellae phase boundary. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2229–2238, 1999  相似文献   

7.
The phase behavior of thin‐film blends of polystyrene (PS) and the random copolymer poly(styrene‐co‐4‐bromostyrene) (PBS) was studied with atomic force microscopy (AFM) and small‐angle X‐ray scattering (SAXS). Phase behavior was studied as a function of the PBS and PS degree of polymerization (N), degree of miscibility [controlled via the volume fraction of bromine in the copolymer (f)], and annealing conditions. The Flory–Huggins interaction parameter χ was measured directly from SAXS as a function of temperature and scaled with f as χ = f2χS–BrS [where χS–BrS represents the segmental interaction between PS and the homopolymer poly(4‐bromostyrene)] Simulations based on the Flory–Huggins theory and χ measured from SAXS were used to predict phase diagrams for all the systems studied. The PBS/PS system exhibited upper critical solution temperature behavior. The AFM studies showed that increasing f in PBS led to progressively different morphologies, from flat topography (i.e., one phase) to interconnected structures or islands. In the two‐phase region, the morphology was a strong function of N (due to changes in mobility). A comparison of the estimated PBS volume fractions from the AFM images with the PBS bulk volume fraction in the blend suggested the encapsulation of PBS in PS, supporting the work of previous researchers. Excellent agreement between the phase diagram predictions (based on χ measured by SAXS) and the AFM images was observed. These studies were also consistent with interdiffusion measurements of PBS/PS interfaces (with Rutherford backscattering spectroscopy), which indicated that the interdiffusion coefficient decreased with increasing χ in the one‐phase region and dropped to zero deep inside the two‐phase region. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 255–271, 2002  相似文献   

8.
Two well‐defined heptablock quaterpolymers of the ABCDCBA type [Α: polystyrene (PS), B: poly(butadiene) with ~90% 1,4‐microstructure (PB1,4), C: poly(isoprene) with ~55% 3,4‐microstructure (PI3,4) and D: poly(dimethylsiloxane) (PDMS)] were synthesized by combining anionic polymerization high vacuum techniques and hydrosilylation/chlorosilane chemistry. All intermediates and final products were characterized by size exclusion chromatography, membrane osmometry, and proton nuclear magnetic resonance spectroscopy. Fourier transform infrared spectroscopy was used to further verify the chemical modification reaction of the difunctional PDMS. The self‐assembly in bulk of these novel heptablock quarterpolymers, studied by transmission electron microscopy and small angle X‐ray scattering, revealed 3‐phase 4‐layer alternating lamellae morphology of PS, PB1,4, and mixed PI3,4/PDMS domains. Differential scanning calorimetry was used to further confirm the miscibility of PI3,4 and PDMS blocks. It is the first time that PDMS is the central segment in such multiblock polymers (≥3 chemically different blocks). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1443–1449  相似文献   

9.
We report the observation of a cubic phase consistent with the double gyroid structure in strongly segregated diblock copolymers of PS‐b‐PDMS over a volume fraction (φPDMS) range of ~0.39 to 0.45. The samples have respective molecular weights of 127 kg/mol and 73 kg/mol and degree of segregation equal to 187 and 106, respectively, at annealing temperature of 130 °C. It is important to highlight that two out of the total four samples investigated, exhibited hexagonally close packed cylindrical domains of PDMS and alternating lamellae at φPDMS = 0.39 and 0.45, respectively, indicating the possible narrow range of the DG morphology for the specific diblock copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2419–2427, 2009  相似文献   

10.
We developed thin films of blends of polystyrene (PS) with the thermoresponsive polymer poly(N‐isopropylacrylamide) (PNIPAM) (PS/PNIPAM) and its diblock copolymer polystyrene‐b‐poly(N‐isopropylacrylamide) (PS/PS‐b‐PNIPAM) in different blend ratios, and we study their surface morphology and thermoresponsive wetting behavior. The blends of PS/PNIPAM and PS/PS‐b‐PNIPAM are spin‐casted on flat silicon surfaces with various drying conditions. The surface morphology of the films depends on the blend ratio and the drying conditions. The PS/PS‐b‐PNIPAM films do not show an increase in their water contact angles with temperature, as it is expected by the presence of the PNIPAM block. All PS/PNIPAM films show an increase in the water contact angle above the lower critical solution temperature of PNIPAM, which depends on the ratio of PNIPAM in the blend and is insensitive to the drying conditions of the films. The difference between the wetting behavior of PS/PS‐b‐PNIPAM and PS/PNIPAM films is due to the arrangement of the PNIPAM chains in the film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 670–679  相似文献   

11.
The morphology transition of binary mixtures of polystyrene‐block‐poly(butadiene)‐block‐poly(2‐vinylpyridine)(SBV) triblock and polystyrene (PS) homopolymer thin films was investigated as a function of the volume fraction of added homopolymer and the annealing time in benzene vapor. It was found that the weight ratio of PS in the blends influenced the transition process. When PS content was >5%, the order‐order transition (OOT) of core‐shell cylinders (C) →sphere in “diblock Gyroid” (sdG) → sphere in lamella (sL) → sphere (S) was observed, which was similar to ABC triblock copolymer except for the increased surface area of the PS phase. When PS content reached to 10–30%, the OOT in the sequence of C → sL → S was observed. The disappearance of the Gyroid phase is due to the change of the effective volume fraction. Further increasing the PS content, C phase also disappeared and sL → S was expected to take place. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2014 , 52, 1030–1036  相似文献   

12.
The nanostructures of thin films spin‐coated from binary blends of compositionally symmetric polystyrene‐b‐polybutadiene (PS‐b‐PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing‐incidence small‐angle X‐ray scattering (GISAXS) after spin‐coating and after subsequent solvent vapor annealing (SVA). In thin films of the pure diblock copolymers having high or low molar mass, the lamellae are perpendicular or parallel to the substrate, respectively. The as‐prepared binary blend thin films feature mainly perpendicular lamellae in a one‐phase state, indicating that the higher molar mass diblock copolymer dominates the lamellar orientation. The lamellar thickness decreases linearly with increasing volume fraction of the low molar mass diblock copolymer. After SVA, well‐defined macrophase‐separated nanostructures appear, which feature parallel lamellae near the film surface and perpendicular ones in the bulk.

  相似文献   


13.
采用原子力显微镜(AFM)和透射电镜(TEM)研究了聚苯乙烯/聚二甲基硅氧烷嵌段共聚物(PS-b-PDMS)薄膜的相形态.结果表明,当采用甲苯作为溶剂,旋转涂膜的薄膜样品呈现网络状的形态分布在表面,而样品所对应的透射电镜照片中,PDMS相作为球状分布在PS的连续相中.退火温度对共聚物表面形态有一定的影响,当退火温度高于PDMS的玻璃化温度,表面中PDMS相增多.PS-b-PDMS嵌段共聚物的表面形态随着所用溶剂的变化而有所不同,当采用甲苯作为溶剂时,样品的PS相形成凹坑分布在PDMS的相区之中,而采用环己烷作为溶剂时,PS相作为突起分布在PDMS相区之中.另外,基底对共聚物薄膜表面形态的有较大的影响,当采用硅晶片作为基底时,样品中的PDMS相和PS相呈现近似平行于表面的层状结构.  相似文献   

14.
The design and synthesis of well‐defined polymethylene‐b‐polystyrene (PM‐b‐PS, Mn = 1.3 × 104–3.0 × 104 g/mol; Mw/Mn (GPC) = 1.08–1.18) diblock copolymers by the combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) was successfully achieved. The 1H NMR spectrum and GPC traces of PM‐b‐PS indicated the successful extension of PS segment on the PM macroinitiator. The micellization behavior of such diblock copolymers in tetrahydrofuran were characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques. The average aggregate sizes of PM‐b‐PS diblock copolymers with the same length of PM segment in tetrahydrofuran solution (1.0 mg mL?1) increases from 104.2 nm to 167.7 nm when the molecular weight of PS segment increases. The spherical precipitated aggregates of PM‐b‐PS diblock copolymers with an average diameter of 600 nm were observed by AFM. Honeycomb porous films with the average diameter of 3.0 μm and 6.0 μm, respectively, were successfully fabricated using the solution of PM‐b‐PS diblock copolymers in carbon disulfide via the breath‐figure (BF) method under a static humid condition. The cross‐sections of low density polyethylene (LDPE)/polystyrene (PS)/PM‐b‐PS and LDPE/polycarbonate (PC)/PM‐b‐PS blends were observed by scanning electron microscope and reveal that the PM‐b‐PS diblock copolymers are effective compatilizers for LDPE/PS and LDPE/PC blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1894–1900, 2010  相似文献   

15.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   

16.
The surface morphologies of poly(styrene‐b‐4vinylpyridine) (PS‐b‐P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (?PS) in the mixture. It was found that when hPS was added into symmetric PS‐b‐P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With ?PS increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in ?PS is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3496–3504, 2004  相似文献   

17.
The segmental dynamics of backbone‐deuterated polystyrenes (d3PS) with varying molecular weights (1.7–67 kg/mol) have been measured in blends with poly(vinyl methyl ether) (PVME). 2H NMR T1 values at 15 and 77 MHz are reported for the pure d3PS and for the dilute d3PS component in PVME matrices. The temperature shift that is needed to superpose the NMR T1 data for the pure d3PS and the d3PS as a dilute component in the blend ranges from 45 to 70 K. In the framework of Lodge/McLeish model, the self‐concentration value for d3PS in these dilute blends with PVME is found to be independent of molecular weight. We thus establish for this system that the substantial influence of molecular weight on the blend segmental dynamics can be explained by homopolymer Tg differences. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2252–2262, 2007  相似文献   

18.
The correlation between the morphology and the deformation mechanism in styrene/butadiene block copolymers having modified architecture and in blends with homopolymer polystyrene (hPS) was studied. It was demonstrated that the morphology formation in the block copolymers is highly coupled with their molecular architecture. In particular, the micromechanical behaviour of a star block copolymer and its blends with polystyrene was investigated by using electron microscopy and tensile testing. A homogeneous plastic flow of polystyrene lamellae (thin layer yielding) was observed if the lamella thickness was in the range of 20 nm. The deformation micromechanism switched to the formation of craze-like deformation zones when the average PS lamella thickness changed to about 30 nm and more.  相似文献   

19.
Thermodynamic analyses of surface pressure-area (Π-A) isotherms and Brewster angle microscopy (BAM) reveal that poly(ε-caprolactone) (PCL) with a weight average molar mass of Mw = 10 kg mol−1 and polydispersity index of Mw/Mn = 1.25 and poly(t-butyl acrylate) (PtBA, Mw = 25.7 kg mol−1; Mw/Mn = 1.07) form compatible blends as Langmuir films below the dynamic collapse transition for PCL at Π = 11 mN m−1. For PCL-rich blends, in situ BAM studies reveal growth of PCL crystals for compression past the PCL collapse transition. PCL crystals grown in the plateau regime of the Π-A isotherm exhibit a dendritic morphology presumably resulting from the rejection of PtBA from the growing PCL crystals and hindered diffusion of PCL from the surrounding monolayer to the crystal growth fronts. The ability to transfer the PCL dendrites as Langmuir–Schaefer films onto silicon substrates spincoated with a polystyrene layer facilitates detailed morphological characterization by optical and atomic force microscopy (AFM). AFM reveals that the dendritic branching occurs along the {100} and {110} sector boundaries and is essentially independent of composition. AFM also reveals that the average thickness of PCL dendrites formed at room temperature (22.5 °C), ∼7–8 nm, is comparable with that of PCL crystals grown from single-component PCL Langmuir films and spincoated thin films. In contrast, for PtBA-rich blend films PCL crystallization is suppressed. These findings establish PCL blends as an ideal system for exploring the interplay between chain diffusion and crystal growth in a two-dimensional confined geometry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3300–3318, 2007  相似文献   

20.
The morphology and crystallization behavior of poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) blends compatibilized with graft copolymers were investigated. PPS‐blend‐PET compositions were prepared in which the viscosity of the PPS phase was varied to assess the morphological implications. The dispersed‐phase particle size was influenced by the combined effects of the ratio of dispersed‐phase viscosity to continuous‐phase viscosity and reduced interfacial tension due to the addition of PPS‐graft‐PET copolymers to the blends. In the absence of graft copolymer, the finest dispersion of PET in a continuous phase of PPS was achieved when the viscosity ratio between blend components was nearly equal. As expected, PET particle sizes increased as the viscosity ratio diverged from unity. When graft copolymers were added to the blends, fine dispersions of PET were achieved despite large differences in the viscosities of PPS and PET homopolymers. The interfacial activity of the PPS‐graft‐PET copolymer appeared to be related to the molecular weight ratio of the PPS homopolymer to the PPS segment of the graft copolymer (MH/MA). With increasing solubilization of the PPS graft copolymer segment by the PPS homopolymer, the particle size of the PET dispersed phase decreased. In crystallization studies, the presence of the PPS phase increased the crystallization temperature of PET. The magnitude of the increase in the PET crystallization temperature coincided with the viscosity ratio and extent of the PPS homopolymer solubilization in the graft copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 599–610, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号