首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A reliable method for the separation of fluorescein dyes from their impurities was developed using high performance liquid chromatography and involved a μBondapak C18 reverse phase column and mixtures of methanol and ammonium acetate buffer. This technique was used to verify the purity of commercial products as well as to aid in the development of an empirical theory related to retention of halogenated fluorescein dyes by reverse phase columns.  相似文献   

2.
3.
天线若丹明染料分子内能量与电荷传递的研究   总被引:2,自引:0,他引:2  
田禾 《物理化学学报》1994,10(3):193-196
染料三重态在染料激光的应用中起着重要作用,尤其是三重态一Z重态(T-T)吸收常常会造成谐振腔损耗*.为了减少由基态吸收而造成的话振腔损耗,带有紫外吸收天线分子的三发色团染料已在研究问,2,5·二苯基螨喳(PP0)在紫外区(如308删)有很强的吸收,PPO-rhod.系列染料(见图1)在紫外区的吸收就很强,由PPO到若丹明母体的单线态一单线态(S功能量传递使这类三发色团染料具有较大的荧光量子效率,较小的基态重复吸收耗能卜,司.然而,在610N640nm区域中这些天线若丹明染料的激光输出效率远远小于若丹明Rh630*,其原因正是…  相似文献   

4.
The absorption and fluorescence properties of a series of 18 indocarbocyanine dyes in organic solvents have been determined. The wavelengths of the absorption and fluorescence maxima, the fluorescence lifetimes and the fluorescence quantum yields relative to the benzo-15-crown-5-substituted phthalocyanine have been measured. The results are discussed in relation to the molecular structures or the dye studied.  相似文献   

5.
2’-Deoxy-5-formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time-resolved mid-IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM-TD-DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine-to-formyl charge-transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark 1nπ* state with a lifetime of ∼3 ps. CT-induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non-radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited-state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands.  相似文献   

6.
The fluorescence properties of the BODIPY dye and its two meso‐substituted derivatives, tert‐butyl‐ and phenyl‐BODIPY , are rationalized. The non‐emissive behavior of the latter two are attributed to the energetically accessible low‐lying conical intersection between the ground state and the lowest excited singlet state. Both intramolecular non‐covalent interactions and excited state charge transfer character are identified as being crucial for ‘stabilizing’ the intersection and prompting the nonradiative decay. Similar crossing was located in the bare BODIPY dye, however, being energetically less accessible, which correlates well with the high fluorescence quantum yields of the parent dye.  相似文献   

7.
Metal-free indoline dyes for dye-sensitized solar cells were studied by employing quantum chemistry methods.Comparative study of the properties of both ground and excited states of metal-free indoline dyes for dye-sensitized solar cells revealed: (i) as the number of rhodanine rings increases, the energy di?erence betweenHOMO and LUMO decreases and there is a red shift in the absorption spectrum with the binding energyincreased, and the transition dipole moment decreased; (ii) Based on an analysis of charge di?erential density,we observed that the charge and energy are transfered from the phenylethenyl to the indoline and rhodaninerings; (iii) The electron-hole coherences are mainly on the indoline and rhodanine rings, and the exciton sizesare 30 and 40 atoms for indoline dyes with one and two rhodanline rings, respectively. These results serveas a good example of computer-aided design in metal-free indoline dyes for dye-sensitized solar cells.  相似文献   

8.
Attachment of a pair of P-stereogenic mesityl(alkynyl)phosphanyl groups at the 4- and 5-positions of a 9,9-dimethylxanthene framework gave mixtures of the respective rac- and meso-bisphosphanyl diastereoisomers. They slowly epimerized in a thermally induced reaction with Gibbs activation barriers of about 25 kcal mol−1 at room temperature (measured and DFT calculated). The reaction of the meso-mesityl(tert-butylethynyl)phosphanyl derivative with two molar equivalents of Piers′ borane [HB(C6F5)2] led to the formation of the alkylidene-bridged geminal bisphosphane/borane-frustrated Lewis pair system. The compound was obtained enriched (>85 %) in the rac diastereoisomer. With a variety of bifunctional donor substrates, the rac-bis-P/B FLP formed macrocyclic compounds. They were all formally derived from meso-configurated diastereoisomers of the bisphosphanylxanthene backbone.  相似文献   

9.
Harvesting non‐emissive spin‐triplet charge‐transfer (CT) excitons of organic semiconductors is fundamentally important for increasing the operation efficiency of future devices. Here we observe thermally activated delayed fluorescence (TADF) in a 1:2 CT cocrystal of trans‐1,2‐diphenylethylene (TSB) and 1,2,4,5‐tetracyanobenzene (TCNB). This cocrystal system is characterized by absorption spectroscopy, variable‐temperature steady‐state and time‐resolved photoluminescence spectroscopy, single‐crystal X‐ray diffraction, and first‐principles calculations. These data reveal that intermolecular CT in cocrystal narrows the singlet–triplet energy gap and therefore facilitates reverse intersystem crossing (RISC) for TADF. These findings open up a new way for the future design and development of novel TADF materials.  相似文献   

10.
In this study, we demonstrate six novel xanthene derivatives and their spectroscopic and chemical properties. The presented synthesis examination allowed us to obtain two different compounds during one step, with open and closed lactone rings substituted with different length alkyl chains. Increasing the reaction efficiency to 77% was obtained using the microwave-assisted method. Moreover, the modification of O-alkylation synthesis in an ecofriendly way using a ball mill led to achieving exclusively one opened ring product. All of the synthesized compounds showed different spectroscopic behaviors in comparison with the different organic dyes; the typical concentration quenching of luminescence was not observed. The relationship between the length of the alkyl chain and the time of luminescence decay is presented. Synthetized closed forms of dyes turned out to be promising leuco dyes. For the first time, an ionic liquid was used as a developer of synthesized xanthene derivatives (as leuco dyes), which led to obtaining an irreversible thermochromic marker.  相似文献   

11.
Newly emerging super-resolution imaging techniques provide opportunities for precise observations on cellular microstructures. However, they also impose severe demands on fluorophores. Here, we develop a new series of NIR xanthene dyes, named as KRh s, by replacing the 10-position O of rhodamines with a cyclo-ketal. KRh s display an intense NIR emission peak at 700 nm with fluorescence quantum yields up to 0.64. More importantly, they, without the aid of enhancing buffer, exhibit stochastic fluorescence off–on switches to support time-resolved localization of single fluorophore. KRh s are functionalized into KRh-MitoFix , KRh-Mem and KRh-Halo that demonstrate mitochondria, plasma membrane and fusion protein targeting ability, respectively. Consequently, these KRh probes demonstrate straightforward usage for super-resolution imaging of these targets in live cells. Therefore, KRh s merit future development for fluorescence labeling and super-resolution imaging in the NIR region.  相似文献   

12.
Solid boosters are an emerging concept for improving the performance and especially the energy storage density of the redox flow batteries, but thermodynamical and practical considerations of these systems are missing, scarce or scattered in the literature. In this paper we will formulate how these systems work from the point of view of thermodynamics. We describe possible pathways for charge transfer, estimate the overpotentials required for these reactions in realistic conditions, and illustrate the range of energy storage densities achievable considering different redox electrolyte concentrations, solid volume fractions and solid charge storage densities. Approximately 80% of charge storage capacity of the solid can be accessed if redox electrolyte and redox solid have matching redox potentials. 100 times higher active areas are required from the solid boosters in the tank to reach overpotentials of <10 mV.  相似文献   

13.
The rate limiting steps of the charge transfer between the solution and a conducting polymer during the switching between oxidation states are investigated by means of ac electrogravimetry. It is shown that the polymer requires anion entry and cation and solvent expulsion to compensate for the positive charges formed during the polymer oxidation. The insertion/expulsion laws, the diffusion coefficients of the species, and the atomic weights of the inserted/expelled species are determined.  相似文献   

14.
Zinc(II) bis(dipyrrin) complexes, which feature intense visible absorption and efficient symmetry breaking charge transfer (SBCT) are outstanding candidates for photovoltaics but their short lived triplet states limit applications in several areas. Herein we demonstrate that triplet excited state dynamics of bis(dipyrrin) complexes can be efficiently tuned by attaching electron donating aryl moieties at the 5,5′-position of the complexes. For the first time, a long lived triplet excited state (τT=296 μs) along with efficient ISC ability (ΦΔ=71 %) was observed for zinc(II) bis(dipyrrin) complexes, formed via SBCT. The results revealed that molecular geometry and energy gap between the charge transfer (CT) state and triplet energy levels strongly control the triplet excited state properties of the complexes. An efficient triplet–triplet annihilation upconversion system was devised for the first time using a SBCT architecture as triplet photosensitizer, reaching a high upconversion quantum yield of 6.2 %. Our findings provide a blueprint for the development of triplet photosensitizers based on earth abundant metal complexes with long lived triplet state for revolutionary photochemical applications.  相似文献   

15.
16.
Fullerelleshavegeneratedarapidlygrowingandactiveresearchareabecauseoftheirunusualstructureandphysico-chemicalproperties.Fullerenes(C,.,.C,,)havehigherelectrollaffinity(2.75ev),soitiswellkllownthattheyareexcellentelectronacceptorsandhavealargenumberofcolljugatedrsbondswhichmayleadtolargenon-linearpolarizabilities'.C,,.,isreportedtoformchargetranstbrcomplexes(CTC)withappropriateelectrondonors,forexample,polymolecularPVK,y-cyclodextrin,aromaticandaliphaticammes'-3.Thecharge-transferinteraction…  相似文献   

17.
This study evaluated the rose bengal‐ and erythrosine‐mediated photoinactivation against Salmonella Typhimurium and Staphylococcus aureus planktonic and sessile cells using green LED as a light source. The free‐living or 2‐day‐old biofilm cells were treated with different concentrations of the photosensitizing agents and subjected to irradiation. Only 5 min photosensitization with rose bengal at 25 nmol L?1 and 75 μmol L?1 completely eliminated S. aureus and S. Typhimurium planktonic cells, respectively. Erythrosine at 500 nmol L?1 and 5 min of light exposure also reduced S. aureus planktonic cells to undetectable levels. Eradication of S. aureus biofilms was achieved when 500 μmol L?1 of erythrosine or 250 μmol L?1 of rose bengal was combined with 30 min of irradiation. Scanning electron microscopy allowed the observation of morphological changes in planktonic cells and disruption of the biofilm architecture after photodynamic treatment. The overall data demonstrate that rose bengal and erythrosine activated by green LED may be a targeted strategy for controlling foodborne pathogens in both planktonic and sessile states.  相似文献   

18.
The effect of polyanions on the formation of mixed dimers of methylene blue (MB) and trypaflavine (TF), MB and phenosafranine (PhS), and MB and pyronine G (PG) was investigated spectrophotometrically. The following polyanions were used: potassium poly(vinyl sulfate) (PVSK), potassium poly(styrenesulfonate) (PSSK), sodium poly(methacrylate) (PMANa), and sodium poly-(acrylate) (PAANa). The formation of mixed dimers was dependent on the kind of polyanion and polyanion-dye ratio. MB-photo-sensitized isomerization of cis-p-(phenylazo)-phenyltrimethyl-ammonium iodide (cis-PTA) to the trans-isomer was used advantageously to investigate the triplet excitation energy transfer between cationic dyes bound to polyanions. Although the efficiency of the excitation energy transfer between MB and cis-PTA was enhanced by the addition of polyanions, the formation of mixed dimer of MB with TF, PhS, or PG reduced the efficiency of the excitation energy transfer. Correlation with the formation of mixed dimer of MB with TF, PhS, or PG and the efficiency of the excitation energy transfer from MB to cis-PTA is discussed.  相似文献   

19.
球烯C60与锌酞菁形成电荷迁移络合物的研究   总被引:6,自引:3,他引:6  
球烯是一种很有前途的新型非线性光学材料,它具有非平面的共轭离域大Π键体系,具有结合电子的能力,可作为电子受体与电子给体形成电荷迁移络合物(CTC),并能改善有机分子的光学和电学性质[1~4].金属酞青(MPc)也具有共轭大Π键体系,富有π电子,且具有良好的光敏性、化学稳定性及热稳定性.在一定条件下,球烯与金属酞育形成的CTC将大大改善金属酞育的光电性能.因此,研究球烯与金属酞蓄形成的CTC对开拓球烯与金属酞警的应用有重要意义.本文根据C60与锌酞菁(ZnPc)形成的CTC的光谱特征对其组成及相应的平衡常数进行了研究…  相似文献   

20.
Communication between chromophores is vital for both natural and non‐natural photophysical processes. Spatial confinements offer unique conditions to scrutinize such interactions. Polynorbornene‐ and polycyclobutene‐based ladderphanes are ideal model compounds in which all tetraarylethylene (TAE) linkers are aligned coherently. The spans for each of the monomeric units in these ladderphanes are 4.5–5.5 Å. Monomers do not exhibit emission, because bond rotation in TAE can quench the excited‐state energy. However, polymers emit at 493 nm (Φ=0.015) with large Stokes shift under ambient conditions and exhibit dual emission at 450 and 493 nm at 150 K. When the temperature is lowered, the emission intensity at 450 nm increases, whereas that at 493 nm decreases. At 100 K, both monomers and polymers emit only at 450 nm. This shorter‐wavelength emission arises from the intrinsic emission of TAE chromophore, and the emission at 493 nm could be attributed to the excimer emission in the confined space of ladderphanes. The fast kinetics suggest diffusion‐controlled formation of the excimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号